Mister Exam

Other calculators


x^2+x+6=0

x^2+x+6=0 equation

The teacher will be very surprised to see your correct solution 😉

v

Numerical solution:

Do search numerical solution at [, ]

The solution

You have entered [src]
 2            
x  + x + 6 = 0
(x2+x)+6=0\left(x^{2} + x\right) + 6 = 0
Detail solution
This equation is of the form
a*x^2 + b*x + c = 0

A quadratic equation can be solved
using the discriminant.
The roots of the quadratic equation:
x1=Db2ax_{1} = \frac{\sqrt{D} - b}{2 a}
x2=Db2ax_{2} = \frac{- \sqrt{D} - b}{2 a}
where D = b^2 - 4*a*c - it is the discriminant.
Because
a=1a = 1
b=1b = 1
c=6c = 6
, then
D = b^2 - 4 * a * c = 

(1)^2 - 4 * (1) * (6) = -23

Because D<0, then the equation
has no real roots,
but complex roots is exists.
x1 = (-b + sqrt(D)) / (2*a)

x2 = (-b - sqrt(D)) / (2*a)

or
x1=12+23i2x_{1} = - \frac{1}{2} + \frac{\sqrt{23} i}{2}
x2=1223i2x_{2} = - \frac{1}{2} - \frac{\sqrt{23} i}{2}
Vieta's Theorem
it is reduced quadratic equation
px+q+x2=0p x + q + x^{2} = 0
where
p=bap = \frac{b}{a}
p=1p = 1
q=caq = \frac{c}{a}
q=6q = 6
Vieta Formulas
x1+x2=px_{1} + x_{2} = - p
x1x2=qx_{1} x_{2} = q
x1+x2=1x_{1} + x_{2} = -1
x1x2=6x_{1} x_{2} = 6
The graph
-6.0-5.0-4.0-3.0-2.0-1.00.01.02.03.04.0020
Rapid solution [src]
               ____
       1   I*\/ 23 
x1 = - - - --------
       2      2    
x1=1223i2x_{1} = - \frac{1}{2} - \frac{\sqrt{23} i}{2}
               ____
       1   I*\/ 23 
x2 = - - + --------
       2      2    
x2=12+23i2x_{2} = - \frac{1}{2} + \frac{\sqrt{23} i}{2}
x2 = -1/2 + sqrt(23)*i/2
Sum and product of roots [src]
sum
          ____             ____
  1   I*\/ 23      1   I*\/ 23 
- - - -------- + - - + --------
  2      2         2      2    
(1223i2)+(12+23i2)\left(- \frac{1}{2} - \frac{\sqrt{23} i}{2}\right) + \left(- \frac{1}{2} + \frac{\sqrt{23} i}{2}\right)
=
-1
1-1
product
/          ____\ /          ____\
|  1   I*\/ 23 | |  1   I*\/ 23 |
|- - - --------|*|- - + --------|
\  2      2    / \  2      2    /
(1223i2)(12+23i2)\left(- \frac{1}{2} - \frac{\sqrt{23} i}{2}\right) \left(- \frac{1}{2} + \frac{\sqrt{23} i}{2}\right)
=
6
66
6
Numerical answer [src]
x1 = -0.5 - 2.39791576165636*i
x2 = -0.5 + 2.39791576165636*i
x2 = -0.5 + 2.39791576165636*i
The graph
x^2+x+6=0 equation