A quadratic equation can be solved using the discriminant. The roots of the quadratic equation: x1=2aD−b x2=2a−D−b where D = b^2 - 4*a*c - it is the discriminant. Because a=1 b=9 c=20 , then
D = b^2 - 4 * a * c =
(9)^2 - 4 * (1) * (20) = 1
Because D > 0, then the equation has two roots.
x1 = (-b + sqrt(D)) / (2*a)
x2 = (-b - sqrt(D)) / (2*a)
or x1=−4 x2=−5
Vieta's Theorem
it is reduced quadratic equation px+q+x2=0 where p=ab p=9 q=ac q=20 Vieta Formulas x1+x2=−p x1x2=q x1+x2=−9 x1x2=20