Mister Exam

Other calculators


x^2+5x+9=0

x^2+5x+9=0 equation

The teacher will be very surprised to see your correct solution 😉

v

Numerical solution:

Do search numerical solution at [, ]

The solution

You have entered [src]
 2              
x  + 5*x + 9 = 0
x2+5x+9=0x^{2} + 5 x + 9 = 0
Detail solution
This equation is of the form
a*x^2 + b*x + c = 0

A quadratic equation can be solved
using the discriminant.
The roots of the quadratic equation:
x1=Db2ax_{1} = \frac{\sqrt{D} - b}{2 a}
x2=Db2ax_{2} = \frac{- \sqrt{D} - b}{2 a}
where D = b^2 - 4*a*c - it is the discriminant.
Because
a=1a = 1
b=5b = 5
c=9c = 9
, then
D = b^2 - 4 * a * c = 

(5)^2 - 4 * (1) * (9) = -11

Because D<0, then the equation
has no real roots,
but complex roots is exists.
x1 = (-b + sqrt(D)) / (2*a)

x2 = (-b - sqrt(D)) / (2*a)

or
x1=52+11i2x_{1} = - \frac{5}{2} + \frac{\sqrt{11} i}{2}
Simplify
x2=5211i2x_{2} = - \frac{5}{2} - \frac{\sqrt{11} i}{2}
Simplify
Vieta's Theorem
it is reduced quadratic equation
px+x2+q=0p x + x^{2} + q = 0
where
p=bap = \frac{b}{a}
p=5p = 5
q=caq = \frac{c}{a}
q=9q = 9
Vieta Formulas
x1+x2=px_{1} + x_{2} = - p
x1x2=qx_{1} x_{2} = q
x1+x2=5x_{1} + x_{2} = -5
x1x2=9x_{1} x_{2} = 9
The graph
012-9-8-7-6-5-4-3-2-1020
Sum and product of roots [src]
sum
              ____             ____
      5   I*\/ 11      5   I*\/ 11 
0 + - - - -------- + - - + --------
      2      2         2      2    
(0(52+11i2))(5211i2)\left(0 - \left(\frac{5}{2} + \frac{\sqrt{11} i}{2}\right)\right) - \left(\frac{5}{2} - \frac{\sqrt{11} i}{2}\right)
=
-5
5-5
product
  /          ____\ /          ____\
  |  5   I*\/ 11 | |  5   I*\/ 11 |
1*|- - - --------|*|- - + --------|
  \  2      2    / \  2      2    /
1(5211i2)(52+11i2)1 \left(- \frac{5}{2} - \frac{\sqrt{11} i}{2}\right) \left(- \frac{5}{2} + \frac{\sqrt{11} i}{2}\right)
=
9
99
9
Rapid solution [src]
               ____
       5   I*\/ 11 
x1 = - - - --------
       2      2    
x1=5211i2x_{1} = - \frac{5}{2} - \frac{\sqrt{11} i}{2}
               ____
       5   I*\/ 11 
x2 = - - + --------
       2      2    
x2=52+11i2x_{2} = - \frac{5}{2} + \frac{\sqrt{11} i}{2}
Numerical answer [src]
x1 = -2.5 - 1.6583123951777*i
x2 = -2.5 + 1.6583123951777*i
x2 = -2.5 + 1.6583123951777*i
The graph
x^2+5x+9=0 equation