x^2+5x+9=0 equation
The teacher will be very surprised to see your correct solution 😉
The solution
Detail solution
This equation is of the form
a*x^2 + b*x + c = 0 A quadratic equation can be solved
using the discriminant.
The roots of the quadratic equation:
x 1 = D − b 2 a x_{1} = \frac{\sqrt{D} - b}{2 a} x 1 = 2 a D − b x 2 = − D − b 2 a x_{2} = \frac{- \sqrt{D} - b}{2 a} x 2 = 2 a − D − b where D = b^2 - 4*a*c - it is the discriminant.
Because
a = 1 a = 1 a = 1 b = 5 b = 5 b = 5 c = 9 c = 9 c = 9 , then
D = b^2 - 4 * a * c = (5)^2 - 4 * (1) * (9) = -11 Because D<0, then the equation
has no real roots,
but complex roots is exists.
x1 = (-b + sqrt(D)) / (2*a) x2 = (-b - sqrt(D)) / (2*a) or
x 1 = − 5 2 + 11 i 2 x_{1} = - \frac{5}{2} + \frac{\sqrt{11} i}{2} x 1 = − 2 5 + 2 11 i Simplify x 2 = − 5 2 − 11 i 2 x_{2} = - \frac{5}{2} - \frac{\sqrt{11} i}{2} x 2 = − 2 5 − 2 11 i Simplify
Vieta's Theorem
it is reduced quadratic equation
p x + x 2 + q = 0 p x + x^{2} + q = 0 p x + x 2 + q = 0 where
p = b a p = \frac{b}{a} p = a b p = 5 p = 5 p = 5 q = c a q = \frac{c}{a} q = a c q = 9 q = 9 q = 9 Vieta Formulas
x 1 + x 2 = − p x_{1} + x_{2} = - p x 1 + x 2 = − p x 1 x 2 = q x_{1} x_{2} = q x 1 x 2 = q x 1 + x 2 = − 5 x_{1} + x_{2} = -5 x 1 + x 2 = − 5 x 1 x 2 = 9 x_{1} x_{2} = 9 x 1 x 2 = 9
Sum and product of roots
[src]
____ ____
5 I*\/ 11 5 I*\/ 11
0 + - - - -------- + - - + --------
2 2 2 2
( 0 − ( 5 2 + 11 i 2 ) ) − ( 5 2 − 11 i 2 ) \left(0 - \left(\frac{5}{2} + \frac{\sqrt{11} i}{2}\right)\right) - \left(\frac{5}{2} - \frac{\sqrt{11} i}{2}\right) ( 0 − ( 2 5 + 2 11 i ) ) − ( 2 5 − 2 11 i )
/ ____\ / ____\
| 5 I*\/ 11 | | 5 I*\/ 11 |
1*|- - - --------|*|- - + --------|
\ 2 2 / \ 2 2 /
1 ( − 5 2 − 11 i 2 ) ( − 5 2 + 11 i 2 ) 1 \left(- \frac{5}{2} - \frac{\sqrt{11} i}{2}\right) \left(- \frac{5}{2} + \frac{\sqrt{11} i}{2}\right) 1 ( − 2 5 − 2 11 i ) ( − 2 5 + 2 11 i )
____
5 I*\/ 11
x1 = - - - --------
2 2
x 1 = − 5 2 − 11 i 2 x_{1} = - \frac{5}{2} - \frac{\sqrt{11} i}{2} x 1 = − 2 5 − 2 11 i
____
5 I*\/ 11
x2 = - - + --------
2 2
x 2 = − 5 2 + 11 i 2 x_{2} = - \frac{5}{2} + \frac{\sqrt{11} i}{2} x 2 = − 2 5 + 2 11 i
x1 = -2.5 - 1.6583123951777*i
x2 = -2.5 + 1.6583123951777*i
x2 = -2.5 + 1.6583123951777*i