Mister Exam

Other calculators


x^2+4x+5=0

x^2+4x+5=0 equation

The teacher will be very surprised to see your correct solution 😉

v

Numerical solution:

Do search numerical solution at [, ]

The solution

You have entered [src]
 2              
x  + 4*x + 5 = 0
$$\left(x^{2} + 4 x\right) + 5 = 0$$
Detail solution
This equation is of the form
a*x^2 + b*x + c = 0

A quadratic equation can be solved
using the discriminant.
The roots of the quadratic equation:
$$x_{1} = \frac{\sqrt{D} - b}{2 a}$$
$$x_{2} = \frac{- \sqrt{D} - b}{2 a}$$
where D = b^2 - 4*a*c - it is the discriminant.
Because
$$a = 1$$
$$b = 4$$
$$c = 5$$
, then
D = b^2 - 4 * a * c = 

(4)^2 - 4 * (1) * (5) = -4

Because D<0, then the equation
has no real roots,
but complex roots is exists.
x1 = (-b + sqrt(D)) / (2*a)

x2 = (-b - sqrt(D)) / (2*a)

or
$$x_{1} = -2 + i$$
$$x_{2} = -2 - i$$
Vieta's Theorem
it is reduced quadratic equation
$$p x + q + x^{2} = 0$$
where
$$p = \frac{b}{a}$$
$$p = 4$$
$$q = \frac{c}{a}$$
$$q = 5$$
Vieta Formulas
$$x_{1} + x_{2} = - p$$
$$x_{1} x_{2} = q$$
$$x_{1} + x_{2} = -4$$
$$x_{1} x_{2} = 5$$
The graph
Sum and product of roots [src]
sum
-2 - I + -2 + I
$$\left(-2 - i\right) + \left(-2 + i\right)$$
=
-4
$$-4$$
product
(-2 - I)*(-2 + I)
$$\left(-2 - i\right) \left(-2 + i\right)$$
=
5
$$5$$
5
Rapid solution [src]
x1 = -2 - I
$$x_{1} = -2 - i$$
x2 = -2 + I
$$x_{2} = -2 + i$$
x2 = -2 + i
Numerical answer [src]
x1 = -2.0 + 1.0*i
x2 = -2.0 - 1.0*i
x2 = -2.0 - 1.0*i
The graph
x^2+4x+5=0 equation