x^2+4x-32=0 equation
The teacher will be very surprised to see your correct solution 😉
The solution
Detail solution
This equation is of the form
a*x^2 + b*x + c = 0
A quadratic equation can be solved
using the discriminant.
The roots of the quadratic equation:
$$x_{1} = \frac{\sqrt{D} - b}{2 a}$$
$$x_{2} = \frac{- \sqrt{D} - b}{2 a}$$
where D = b^2 - 4*a*c - it is the discriminant.
Because
$$a = 1$$
$$b = 4$$
$$c = -32$$
, then
D = b^2 - 4 * a * c =
(4)^2 - 4 * (1) * (-32) = 144
Because D > 0, then the equation has two roots.
x1 = (-b + sqrt(D)) / (2*a)
x2 = (-b - sqrt(D)) / (2*a)
or
$$x_{1} = 4$$
Simplify$$x_{2} = -8$$
Simplify
Vieta's Theorem
it is reduced quadratic equation
$$p x + x^{2} + q = 0$$
where
$$p = \frac{b}{a}$$
$$p = 4$$
$$q = \frac{c}{a}$$
$$q = -32$$
Vieta Formulas
$$x_{1} + x_{2} = - p$$
$$x_{1} x_{2} = q$$
$$x_{1} + x_{2} = -4$$
$$x_{1} x_{2} = -32$$
$$x_{1} = -8$$
$$x_{2} = 4$$
Sum and product of roots
[src]
$$\left(-8 + 0\right) + 4$$
$$-4$$
$$1 \left(-8\right) 4$$
$$-32$$