Mister Exam

Other calculators


x^2+3x-28=0

x^2+3x-28=0 equation

The teacher will be very surprised to see your correct solution 😉

v

Numerical solution:

Do search numerical solution at [, ]

The solution

You have entered [src]
 2               
x  + 3*x - 28 = 0
x2+3x28=0x^{2} + 3 x - 28 = 0
Detail solution
This equation is of the form
a x2+b x+c=0a\ x^2 + b\ x + c = 0
A quadratic equation can be solved using the discriminant
The roots of the quadratic equation:
x1=Db2ax_{1} = \frac{\sqrt{D} - b}{2 a}
x2=Db2ax_{2} = \frac{- \sqrt{D} - b}{2 a}
where D=b24acD = b^2 - 4 a c is the discriminant.
Because
a=1a = 1
b=3b = 3
c=28c = -28
, then
D=b24 a c=D = b^2 - 4\ a\ c =
3214(28)=1213^{2} - 1 \cdot 4 \left(-28\right) = 121
Because D > 0, then the equation has two roots.
x1=(b+D)2ax_1 = \frac{(-b + \sqrt{D})}{2 a}
x2=(bD)2ax_2 = \frac{(-b - \sqrt{D})}{2 a}
or
x1=4x_{1} = 4
Simplify
x2=7x_{2} = -7
Simplify
Vieta's Theorem
it is reduced quadratic equation
px+x2+q=0p x + x^{2} + q = 0
where
p=bap = \frac{b}{a}
p=3p = 3
q=caq = \frac{c}{a}
q=28q = -28
Vieta Formulas
x1+x2=px_{1} + x_{2} = - p
x1x2=qx_{1} x_{2} = q
x1+x2=3x_{1} + x_{2} = -3
x1x2=28x_{1} x_{2} = -28
The graph
-7.5-5.0-2.50.02.55.07.510.012.515.017.520.0-100100
Rapid solution [src]
x_1 = -7
x1=7x_{1} = -7
x_2 = 4
x2=4x_{2} = 4
Sum and product of roots [src]
sum
-7 + 4
(7)+(4)\left(-7\right) + \left(4\right)
=
-3
3-3
product
-7 * 4
(7)(4)\left(-7\right) * \left(4\right)
=
-28
28-28
Numerical answer [src]
x1 = 4.0
x2 = -7.0
x2 = -7.0
The graph
x^2+3x-28=0 equation