x^2-36*x+324=0 equation
The teacher will be very surprised to see your correct solution 😉
The solution
Detail solution
This equation is of the form
a*x^2 + b*x + c = 0
A quadratic equation can be solved
using the discriminant.
The roots of the quadratic equation:
$$x_{1} = \frac{\sqrt{D} - b}{2 a}$$
$$x_{2} = \frac{- \sqrt{D} - b}{2 a}$$
where D = b^2 - 4*a*c - it is the discriminant.
Because
$$a = 1$$
$$b = -36$$
$$c = 324$$
, then
D = b^2 - 4 * a * c =
(-36)^2 - 4 * (1) * (324) = 0
Because D = 0, then the equation has one root.
x = -b/2a = --36/2/(1)
$$x_{1} = 18$$
Vieta's Theorem
it is reduced quadratic equation
$$p x + q + x^{2} = 0$$
where
$$p = \frac{b}{a}$$
$$p = -36$$
$$q = \frac{c}{a}$$
$$q = 324$$
Vieta Formulas
$$x_{1} + x_{2} = - p$$
$$x_{1} x_{2} = q$$
$$x_{1} + x_{2} = 36$$
$$x_{1} x_{2} = 324$$
Sum and product of roots
[src]
$$18$$
$$18$$
$$18$$
$$18$$