Mister Exam

Other calculators


x^2-4*x-4=0

x^2-4*x-4=0 equation

The teacher will be very surprised to see your correct solution 😉

v

Numerical solution:

Do search numerical solution at [, ]

The solution

You have entered [src]
 2              
x  - 4*x - 4 = 0
$$\left(x^{2} - 4 x\right) - 4 = 0$$
Detail solution
This equation is of the form
a*x^2 + b*x + c = 0

A quadratic equation can be solved
using the discriminant.
The roots of the quadratic equation:
$$x_{1} = \frac{\sqrt{D} - b}{2 a}$$
$$x_{2} = \frac{- \sqrt{D} - b}{2 a}$$
where D = b^2 - 4*a*c - it is the discriminant.
Because
$$a = 1$$
$$b = -4$$
$$c = -4$$
, then
D = b^2 - 4 * a * c = 

(-4)^2 - 4 * (1) * (-4) = 32

Because D > 0, then the equation has two roots.
x1 = (-b + sqrt(D)) / (2*a)

x2 = (-b - sqrt(D)) / (2*a)

or
$$x_{1} = 2 + 2 \sqrt{2}$$
$$x_{2} = 2 - 2 \sqrt{2}$$
Vieta's Theorem
it is reduced quadratic equation
$$p x + q + x^{2} = 0$$
where
$$p = \frac{b}{a}$$
$$p = -4$$
$$q = \frac{c}{a}$$
$$q = -4$$
Vieta Formulas
$$x_{1} + x_{2} = - p$$
$$x_{1} x_{2} = q$$
$$x_{1} + x_{2} = 4$$
$$x_{1} x_{2} = -4$$
The graph
Sum and product of roots [src]
sum
        ___           ___
2 - 2*\/ 2  + 2 + 2*\/ 2 
$$\left(2 - 2 \sqrt{2}\right) + \left(2 + 2 \sqrt{2}\right)$$
=
4
$$4$$
product
/        ___\ /        ___\
\2 - 2*\/ 2 /*\2 + 2*\/ 2 /
$$\left(2 - 2 \sqrt{2}\right) \left(2 + 2 \sqrt{2}\right)$$
=
-4
$$-4$$
-4
Rapid solution [src]
             ___
x1 = 2 - 2*\/ 2 
$$x_{1} = 2 - 2 \sqrt{2}$$
             ___
x2 = 2 + 2*\/ 2 
$$x_{2} = 2 + 2 \sqrt{2}$$
x2 = 2 + 2*sqrt(2)
Numerical answer [src]
x1 = -0.82842712474619
x2 = 4.82842712474619
x2 = 4.82842712474619
The graph
x^2-4*x-4=0 equation