Mister Exam

Other calculators


1/x^2+2/x-3=0

1/x^2+2/x-3=0 equation

The teacher will be very surprised to see your correct solution 😉

v

Numerical solution:

Do search numerical solution at [, ]

The solution

You have entered [src]
1    2        
-- + - - 3 = 0
 2   x        
x             
$$\left(\frac{1}{x^{2}} + \frac{2}{x}\right) - 3 = 0$$
Detail solution
Given the equation:
$$\left(\frac{1}{x^{2}} + \frac{2}{x}\right) - 3 = 0$$
Multiply the equation sides by the denominators:
x^2
we get:
$$x^{2} \left(\left(\frac{1}{x^{2}} + \frac{2}{x}\right) - 3\right) = 0$$
$$- 3 x^{2} + 2 x + 1 = 0$$
This equation is of the form
a*x^2 + b*x + c = 0

A quadratic equation can be solved
using the discriminant.
The roots of the quadratic equation:
$$x_{1} = \frac{\sqrt{D} - b}{2 a}$$
$$x_{2} = \frac{- \sqrt{D} - b}{2 a}$$
where D = b^2 - 4*a*c - it is the discriminant.
Because
$$a = -3$$
$$b = 2$$
$$c = 1$$
, then
D = b^2 - 4 * a * c = 

(2)^2 - 4 * (-3) * (1) = 16

Because D > 0, then the equation has two roots.
x1 = (-b + sqrt(D)) / (2*a)

x2 = (-b - sqrt(D)) / (2*a)

or
$$x_{1} = - \frac{1}{3}$$
$$x_{2} = 1$$
The graph
Sum and product of roots [src]
sum
1 - 1/3
$$- \frac{1}{3} + 1$$
=
2/3
$$\frac{2}{3}$$
product
-1/3
$$- \frac{1}{3}$$
=
-1/3
$$- \frac{1}{3}$$
-1/3
Rapid solution [src]
x1 = -1/3
$$x_{1} = - \frac{1}{3}$$
x2 = 1
$$x_{2} = 1$$
x2 = 1
Numerical answer [src]
x1 = -0.333333333333333
x2 = 1.0
x2 = 1.0
The graph
1/x^2+2/x-3=0 equation