x^2-8*x+12=0 equation
The teacher will be very surprised to see your correct solution 😉
The solution
Detail solution
This equation is of the form
a*x^2 + b*x + c = 0
A quadratic equation can be solved
using the discriminant.
The roots of the quadratic equation:
$$x_{1} = \frac{\sqrt{D} - b}{2 a}$$
$$x_{2} = \frac{- \sqrt{D} - b}{2 a}$$
where D = b^2 - 4*a*c - it is the discriminant.
Because
$$a = 1$$
$$b = -8$$
$$c = 12$$
, then
D = b^2 - 4 * a * c =
(-8)^2 - 4 * (1) * (12) = 16
Because D > 0, then the equation has two roots.
x1 = (-b + sqrt(D)) / (2*a)
x2 = (-b - sqrt(D)) / (2*a)
or
$$x_{1} = 6$$
$$x_{2} = 2$$
Vieta's Theorem
it is reduced quadratic equation
$$p x + q + x^{2} = 0$$
where
$$p = \frac{b}{a}$$
$$p = -8$$
$$q = \frac{c}{a}$$
$$q = 12$$
Vieta Formulas
$$x_{1} + x_{2} = - p$$
$$x_{1} x_{2} = q$$
$$x_{1} + x_{2} = 8$$
$$x_{1} x_{2} = 12$$
$$x_{1} = 2$$
$$x_{2} = 6$$
Sum and product of roots
[src]
$$2 + 6$$
$$8$$
$$2 \cdot 6$$
$$12$$