Mister Exam

Other calculators


x^2-8*x+6=0

x^2-8*x+6=0 equation

The teacher will be very surprised to see your correct solution 😉

v

Numerical solution:

Do search numerical solution at [, ]

The solution

You have entered [src]
 2              
x  - 8*x + 6 = 0
$$\left(x^{2} - 8 x\right) + 6 = 0$$
Detail solution
This equation is of the form
a*x^2 + b*x + c = 0

A quadratic equation can be solved
using the discriminant.
The roots of the quadratic equation:
$$x_{1} = \frac{\sqrt{D} - b}{2 a}$$
$$x_{2} = \frac{- \sqrt{D} - b}{2 a}$$
where D = b^2 - 4*a*c - it is the discriminant.
Because
$$a = 1$$
$$b = -8$$
$$c = 6$$
, then
D = b^2 - 4 * a * c = 

(-8)^2 - 4 * (1) * (6) = 40

Because D > 0, then the equation has two roots.
x1 = (-b + sqrt(D)) / (2*a)

x2 = (-b - sqrt(D)) / (2*a)

or
$$x_{1} = \sqrt{10} + 4$$
$$x_{2} = 4 - \sqrt{10}$$
Vieta's Theorem
it is reduced quadratic equation
$$p x + q + x^{2} = 0$$
where
$$p = \frac{b}{a}$$
$$p = -8$$
$$q = \frac{c}{a}$$
$$q = 6$$
Vieta Formulas
$$x_{1} + x_{2} = - p$$
$$x_{1} x_{2} = q$$
$$x_{1} + x_{2} = 8$$
$$x_{1} x_{2} = 6$$
The graph
Rapid solution [src]
           ____
x1 = 4 - \/ 10 
$$x_{1} = 4 - \sqrt{10}$$
           ____
x2 = 4 + \/ 10 
$$x_{2} = \sqrt{10} + 4$$
x2 = sqrt(10) + 4
Sum and product of roots [src]
sum
      ____         ____
4 - \/ 10  + 4 + \/ 10 
$$\left(4 - \sqrt{10}\right) + \left(\sqrt{10} + 4\right)$$
=
8
$$8$$
product
/      ____\ /      ____\
\4 - \/ 10 /*\4 + \/ 10 /
$$\left(4 - \sqrt{10}\right) \left(\sqrt{10} + 4\right)$$
=
6
$$6$$
6
Numerical answer [src]
x1 = 0.837722339831621
x2 = 7.16227766016838
x2 = 7.16227766016838
The graph
x^2-8*x+6=0 equation