Mister Exam

Other calculators

x^2-4i=0 equation

The teacher will be very surprised to see your correct solution 😉

v

Numerical solution:

Do search numerical solution at [, ]

The solution

You have entered [src]
 2          
x  - 4*I = 0
$$x^{2} - 4 i = 0$$
Detail solution
This equation is of the form
a*x^2 + b*x + c = 0

A quadratic equation can be solved
using the discriminant.
The roots of the quadratic equation:
$$x_{1} = \frac{\sqrt{D} - b}{2 a}$$
$$x_{2} = \frac{- \sqrt{D} - b}{2 a}$$
where D = b^2 - 4*a*c - it is the discriminant.
Because
$$a = 1$$
$$b = 0$$
$$c = - 4 i$$
, then
D = b^2 - 4 * a * c = 

(0)^2 - 4 * (1) * (-4*i) = 16*i

The equation has two roots.
x1 = (-b + sqrt(D)) / (2*a)

x2 = (-b - sqrt(D)) / (2*a)

or
$$x_{1} = 2 \sqrt{i}$$
Simplify
$$x_{2} = - 2 \sqrt{i}$$
Simplify
Vieta's Theorem
it is reduced quadratic equation
$$p x + q + x^{2} = 0$$
where
$$p = \frac{b}{a}$$
$$p = 0$$
$$q = \frac{c}{a}$$
$$q = \left(-1\right) 4 i$$
Vieta Formulas
$$x_{1} + x_{2} = - p$$
$$x_{1} x_{2} = q$$
$$x_{1} + x_{2} = 0$$
$$x_{1} x_{2} = \left(-1\right) 4 i$$
The graph
Rapid solution [src]
         ___       ___
x1 = - \/ 2  - I*\/ 2 
$$x_{1} = - \sqrt{2} - \sqrt{2} i$$
       ___       ___
x2 = \/ 2  + I*\/ 2 
$$x_{2} = \sqrt{2} + \sqrt{2} i$$
Sum and product of roots [src]
sum
        ___       ___     ___       ___
0 + - \/ 2  - I*\/ 2  + \/ 2  + I*\/ 2 
$$\left(0 - \left(\sqrt{2} + \sqrt{2} i\right)\right) + \left(\sqrt{2} + \sqrt{2} i\right)$$
=
0
$$0$$
product
  /    ___       ___\ /  ___       ___\
1*\- \/ 2  - I*\/ 2 /*\\/ 2  + I*\/ 2 /
$$1 \left(- \sqrt{2} - \sqrt{2} i\right) \left(\sqrt{2} + \sqrt{2} i\right)$$
=
-4*I
$$- 4 i$$
-4*i
Numerical answer [src]
x1 = -1.4142135623731 - 1.4142135623731*i
x2 = 1.4142135623731 + 1.4142135623731*i
x2 = 1.4142135623731 + 1.4142135623731*i