x^2-4i=0 equation
The teacher will be very surprised to see your correct solution 😉
The solution
Detail solution
This equation is of the form
a*x^2 + b*x + c = 0
A quadratic equation can be solved
using the discriminant.
The roots of the quadratic equation:
$$x_{1} = \frac{\sqrt{D} - b}{2 a}$$
$$x_{2} = \frac{- \sqrt{D} - b}{2 a}$$
where D = b^2 - 4*a*c - it is the discriminant.
Because
$$a = 1$$
$$b = 0$$
$$c = - 4 i$$
, then
D = b^2 - 4 * a * c =
(0)^2 - 4 * (1) * (-4*i) = 16*i
The equation has two roots.
x1 = (-b + sqrt(D)) / (2*a)
x2 = (-b - sqrt(D)) / (2*a)
or
$$x_{1} = 2 \sqrt{i}$$
Simplify$$x_{2} = - 2 \sqrt{i}$$
Simplify
Vieta's Theorem
it is reduced quadratic equation
$$p x + q + x^{2} = 0$$
where
$$p = \frac{b}{a}$$
$$p = 0$$
$$q = \frac{c}{a}$$
$$q = \left(-1\right) 4 i$$
Vieta Formulas
$$x_{1} + x_{2} = - p$$
$$x_{1} x_{2} = q$$
$$x_{1} + x_{2} = 0$$
$$x_{1} x_{2} = \left(-1\right) 4 i$$
___ ___
x1 = - \/ 2 - I*\/ 2
$$x_{1} = - \sqrt{2} - \sqrt{2} i$$
___ ___
x2 = \/ 2 + I*\/ 2
$$x_{2} = \sqrt{2} + \sqrt{2} i$$
Sum and product of roots
[src]
___ ___ ___ ___
0 + - \/ 2 - I*\/ 2 + \/ 2 + I*\/ 2
$$\left(0 - \left(\sqrt{2} + \sqrt{2} i\right)\right) + \left(\sqrt{2} + \sqrt{2} i\right)$$
$$0$$
/ ___ ___\ / ___ ___\
1*\- \/ 2 - I*\/ 2 /*\\/ 2 + I*\/ 2 /
$$1 \left(- \sqrt{2} - \sqrt{2} i\right) \left(\sqrt{2} + \sqrt{2} i\right)$$
$$- 4 i$$
x1 = -1.4142135623731 - 1.4142135623731*i
x2 = 1.4142135623731 + 1.4142135623731*i
x2 = 1.4142135623731 + 1.4142135623731*i