Mister Exam

Other calculators

x^2-24x–56=0 equation

The teacher will be very surprised to see your correct solution 😉

v

Numerical solution:

Do search numerical solution at [, ]

The solution

You have entered [src]
 2                
x  - 24*x - 56 = 0
$$\left(x^{2} - 24 x\right) - 56 = 0$$
Detail solution
This equation is of the form
a*x^2 + b*x + c = 0

A quadratic equation can be solved
using the discriminant.
The roots of the quadratic equation:
$$x_{1} = \frac{\sqrt{D} - b}{2 a}$$
$$x_{2} = \frac{- \sqrt{D} - b}{2 a}$$
where D = b^2 - 4*a*c - it is the discriminant.
Because
$$a = 1$$
$$b = -24$$
$$c = -56$$
, then
D = b^2 - 4 * a * c = 

(-24)^2 - 4 * (1) * (-56) = 800

Because D > 0, then the equation has two roots.
x1 = (-b + sqrt(D)) / (2*a)

x2 = (-b - sqrt(D)) / (2*a)

or
$$x_{1} = 12 + 10 \sqrt{2}$$
$$x_{2} = 12 - 10 \sqrt{2}$$
Vieta's Theorem
it is reduced quadratic equation
$$p x + q + x^{2} = 0$$
where
$$p = \frac{b}{a}$$
$$p = -24$$
$$q = \frac{c}{a}$$
$$q = -56$$
Vieta Formulas
$$x_{1} + x_{2} = - p$$
$$x_{1} x_{2} = q$$
$$x_{1} + x_{2} = 24$$
$$x_{1} x_{2} = -56$$
Sum and product of roots [src]
sum
          ___             ___
12 - 10*\/ 2  + 12 + 10*\/ 2 
$$\left(12 - 10 \sqrt{2}\right) + \left(12 + 10 \sqrt{2}\right)$$
=
24
$$24$$
product
/          ___\ /          ___\
\12 - 10*\/ 2 /*\12 + 10*\/ 2 /
$$\left(12 - 10 \sqrt{2}\right) \left(12 + 10 \sqrt{2}\right)$$
=
-56
$$-56$$
-56
Rapid solution [src]
               ___
x1 = 12 - 10*\/ 2 
$$x_{1} = 12 - 10 \sqrt{2}$$
               ___
x2 = 12 + 10*\/ 2 
$$x_{2} = 12 + 10 \sqrt{2}$$
x2 = 12 + 10*sqrt(2)
Numerical answer [src]
x1 = -2.14213562373095
x2 = 26.142135623731
x2 = 26.142135623731