Mister Exam

Other calculators


x^3=5

x^3=5 equation

The teacher will be very surprised to see your correct solution 😉

v

Numerical solution:

Do search numerical solution at [, ]

The solution

You have entered [src]
 3    
x  = 5
$$x^{3} = 5$$
Detail solution
Given the equation
$$x^{3} = 5$$
Because equation degree is equal to = 3 - does not contain even numbers in the numerator, then
the equation has single real root.
Get the root 3-th degree of the equation sides:
We get:
$$\sqrt[3]{x^{3}} = \sqrt[3]{5}$$
or
$$x = \sqrt[3]{5}$$
Expand brackets in the right part
x = 5^1/3

We get the answer: x = 5^(1/3)

All other 2 root(s) is the complex numbers.
do replacement:
$$z = x$$
then the equation will be the:
$$z^{3} = 5$$
Any complex number can presented so:
$$z = r e^{i p}$$
substitute to the equation
$$r^{3} e^{3 i p} = 5$$
where
$$r = \sqrt[3]{5}$$
- the magnitude of the complex number
Substitute r:
$$e^{3 i p} = 1$$
Using Euler’s formula, we find roots for p
$$i \sin{\left(3 p \right)} + \cos{\left(3 p \right)} = 1$$
so
$$\cos{\left(3 p \right)} = 1$$
and
$$\sin{\left(3 p \right)} = 0$$
then
$$p = \frac{2 \pi N}{3}$$
where N=0,1,2,3,...
Looping through the values of N and substituting p into the formula for z
Consequently, the solution will be for z:
$$z_{1} = \sqrt[3]{5}$$
$$z_{2} = - \frac{\sqrt[3]{5}}{2} - \frac{\sqrt{3} \sqrt[3]{5} i}{2}$$
$$z_{3} = - \frac{\sqrt[3]{5}}{2} + \frac{\sqrt{3} \sqrt[3]{5} i}{2}$$
do backward replacement
$$z = x$$
$$x = z$$

The final answer:
$$x_{1} = \sqrt[3]{5}$$
$$x_{2} = - \frac{\sqrt[3]{5}}{2} - \frac{\sqrt{3} \sqrt[3]{5} i}{2}$$
$$x_{3} = - \frac{\sqrt[3]{5}}{2} + \frac{\sqrt{3} \sqrt[3]{5} i}{2}$$
Vieta's Theorem
it is reduced cubic equation
$$p x^{2} + q x + v + x^{3} = 0$$
where
$$p = \frac{b}{a}$$
$$p = 0$$
$$q = \frac{c}{a}$$
$$q = 0$$
$$v = \frac{d}{a}$$
$$v = -5$$
Vieta Formulas
$$x_{1} + x_{2} + x_{3} = - p$$
$$x_{1} x_{2} + x_{1} x_{3} + x_{2} x_{3} = q$$
$$x_{1} x_{2} x_{3} = v$$
$$x_{1} + x_{2} + x_{3} = 0$$
$$x_{1} x_{2} + x_{1} x_{3} + x_{2} x_{3} = 0$$
$$x_{1} x_{2} x_{3} = -5$$
The graph
Rapid solution [src]
     3 ___
x1 = \/ 5 
$$x_{1} = \sqrt[3]{5}$$
       3 ___       ___ 3 ___
       \/ 5    I*\/ 3 *\/ 5 
x2 = - ----- - -------------
         2           2      
$$x_{2} = - \frac{\sqrt[3]{5}}{2} - \frac{\sqrt{3} \sqrt[3]{5} i}{2}$$
       3 ___       ___ 3 ___
       \/ 5    I*\/ 3 *\/ 5 
x3 = - ----- + -------------
         2           2      
$$x_{3} = - \frac{\sqrt[3]{5}}{2} + \frac{\sqrt{3} \sqrt[3]{5} i}{2}$$
x3 = -5^(1/3)/2 + sqrt(3)*5^(1/3)*i/2
Sum and product of roots [src]
sum
          3 ___       ___ 3 ___     3 ___       ___ 3 ___
3 ___     \/ 5    I*\/ 3 *\/ 5      \/ 5    I*\/ 3 *\/ 5 
\/ 5  + - ----- - ------------- + - ----- + -------------
            2           2             2           2      
$$\left(\sqrt[3]{5} + \left(- \frac{\sqrt[3]{5}}{2} - \frac{\sqrt{3} \sqrt[3]{5} i}{2}\right)\right) + \left(- \frac{\sqrt[3]{5}}{2} + \frac{\sqrt{3} \sqrt[3]{5} i}{2}\right)$$
=
0
$$0$$
product
      /  3 ___       ___ 3 ___\ /  3 ___       ___ 3 ___\
3 ___ |  \/ 5    I*\/ 3 *\/ 5 | |  \/ 5    I*\/ 3 *\/ 5 |
\/ 5 *|- ----- - -------------|*|- ----- + -------------|
      \    2           2      / \    2           2      /
$$\sqrt[3]{5} \left(- \frac{\sqrt[3]{5}}{2} - \frac{\sqrt{3} \sqrt[3]{5} i}{2}\right) \left(- \frac{\sqrt[3]{5}}{2} + \frac{\sqrt{3} \sqrt[3]{5} i}{2}\right)$$
=
5
$$5$$
5
Numerical answer [src]
x1 = -0.854987973338349 - 1.48088260968236*i
x2 = -0.854987973338349 + 1.48088260968236*i
x3 = 1.7099759466767
x3 = 1.7099759466767
The graph
x^3=5 equation