(x+1)+(y-1)=(11/10) equation
The teacher will be very surprised to see your correct solution 😉
The solution
Detail solution
Given the linear equation:
(x+1)+(y-1) = (11/10)
Expand brackets in the left part
x+1+y-1 = (11/10)
Expand brackets in the right part
x+1+y-1 = 11/10
Looking for similar summands in the left part:
x + y = 11/10
Move the summands with the other variables
from left part to right part, we given:
$$x = \frac{11}{10} - y$$
We get the answer: x = 11/10 - y
11
x1 = -- - re(y) - I*im(y)
10
$$x_{1} = - \operatorname{re}{\left(y\right)} - i \operatorname{im}{\left(y\right)} + \frac{11}{10}$$
x1 = -re(y) - i*im(y) + 11/10
Sum and product of roots
[src]
11
-- - re(y) - I*im(y)
10
$$- \operatorname{re}{\left(y\right)} - i \operatorname{im}{\left(y\right)} + \frac{11}{10}$$
11
-- - re(y) - I*im(y)
10
$$- \operatorname{re}{\left(y\right)} - i \operatorname{im}{\left(y\right)} + \frac{11}{10}$$
11
-- - re(y) - I*im(y)
10
$$- \operatorname{re}{\left(y\right)} - i \operatorname{im}{\left(y\right)} + \frac{11}{10}$$
11
-- - re(y) - I*im(y)
10
$$- \operatorname{re}{\left(y\right)} - i \operatorname{im}{\left(y\right)} + \frac{11}{10}$$