Mister Exam

Other calculators

(x+1)+(y-1)=(11/10) equation

The teacher will be very surprised to see your correct solution 😉

v

Numerical solution:

Do search numerical solution at [, ]

The solution

You have entered [src]
                11
x + 1 + y - 1 = --
                10
$$\left(x + 1\right) + \left(y - 1\right) = \frac{11}{10}$$
Detail solution
Given the linear equation:
(x+1)+(y-1) = (11/10)

Expand brackets in the left part
x+1+y-1 = (11/10)

Expand brackets in the right part
x+1+y-1 = 11/10

Looking for similar summands in the left part:
x + y = 11/10

Move the summands with the other variables
from left part to right part, we given:
$$x = \frac{11}{10} - y$$
We get the answer: x = 11/10 - y
The graph
Rapid solution [src]
     11                  
x1 = -- - re(y) - I*im(y)
     10                  
$$x_{1} = - \operatorname{re}{\left(y\right)} - i \operatorname{im}{\left(y\right)} + \frac{11}{10}$$
x1 = -re(y) - i*im(y) + 11/10
Sum and product of roots [src]
sum
11                  
-- - re(y) - I*im(y)
10                  
$$- \operatorname{re}{\left(y\right)} - i \operatorname{im}{\left(y\right)} + \frac{11}{10}$$
=
11                  
-- - re(y) - I*im(y)
10                  
$$- \operatorname{re}{\left(y\right)} - i \operatorname{im}{\left(y\right)} + \frac{11}{10}$$
product
11                  
-- - re(y) - I*im(y)
10                  
$$- \operatorname{re}{\left(y\right)} - i \operatorname{im}{\left(y\right)} + \frac{11}{10}$$
=
11                  
-- - re(y) - I*im(y)
10                  
$$- \operatorname{re}{\left(y\right)} - i \operatorname{im}{\left(y\right)} + \frac{11}{10}$$
11/10 - re(y) - i*im(y)