Mister Exam

Other calculators

x-sqrt(x)+12=0 equation

The teacher will be very surprised to see your correct solution 😉

v

Numerical solution:

Do search numerical solution at [, ]

The solution

You have entered [src]
      ___         
x - \/ x  + 12 = 0
$$\left(- \sqrt{x} + x\right) + 12 = 0$$
Detail solution
Given the equation
$$\left(- \sqrt{x} + x\right) + 12 = 0$$
$$- \sqrt{x} = - x - 12$$
We raise the equation sides to 2-th degree
$$x = \left(- x - 12\right)^{2}$$
$$x = x^{2} + 24 x + 144$$
Transfer the right side of the equation left part with negative sign
$$- x^{2} - 23 x - 144 = 0$$
This equation is of the form
a*x^2 + b*x + c = 0

A quadratic equation can be solved
using the discriminant.
The roots of the quadratic equation:
$$x_{1} = \frac{\sqrt{D} - b}{2 a}$$
$$x_{2} = \frac{- \sqrt{D} - b}{2 a}$$
where D = b^2 - 4*a*c - it is the discriminant.
Because
$$a = -1$$
$$b = -23$$
$$c = -144$$
, then
D = b^2 - 4 * a * c = 

(-23)^2 - 4 * (-1) * (-144) = -47

Because D<0, then the equation
has no real roots,
but complex roots is exists.
x1 = (-b + sqrt(D)) / (2*a)

x2 = (-b - sqrt(D)) / (2*a)

or
$$x_{1} = - \frac{23}{2} - \frac{\sqrt{47} i}{2}$$
$$x_{2} = - \frac{23}{2} + \frac{\sqrt{47} i}{2}$$
The graph
Rapid solution [src]
                ____
       23   I*\/ 47 
x1 = - -- - --------
       2       2    
$$x_{1} = - \frac{23}{2} - \frac{\sqrt{47} i}{2}$$
                ____
       23   I*\/ 47 
x2 = - -- + --------
       2       2    
$$x_{2} = - \frac{23}{2} + \frac{\sqrt{47} i}{2}$$
x2 = -23/2 + sqrt(47)*i/2
Sum and product of roots [src]
sum
           ____              ____
  23   I*\/ 47      23   I*\/ 47 
- -- - -------- + - -- + --------
  2       2         2       2    
$$\left(- \frac{23}{2} - \frac{\sqrt{47} i}{2}\right) + \left(- \frac{23}{2} + \frac{\sqrt{47} i}{2}\right)$$
=
-23
$$-23$$
product
/           ____\ /           ____\
|  23   I*\/ 47 | |  23   I*\/ 47 |
|- -- - --------|*|- -- + --------|
\  2       2    / \  2       2    /
$$\left(- \frac{23}{2} - \frac{\sqrt{47} i}{2}\right) \left(- \frac{23}{2} + \frac{\sqrt{47} i}{2}\right)$$
=
144
$$144$$
144
Numerical answer [src]
x1 = -11.5 - 3.42782730020052*i
x2 = -11.5 + 3.42782730020052*i
x2 = -11.5 + 3.42782730020052*i