Mister Exam

Other calculators

(x-7)(-5x-9)=0 equation

The teacher will be very surprised to see your correct solution 😉

v

Numerical solution:

Do search numerical solution at [, ]

The solution

You have entered [src]
(x - 7)*(-5*x - 9) = 0
$$\left(- 5 x - 9\right) \left(x - 7\right) = 0$$
Detail solution
Expand the expression in the equation
$$\left(- 5 x - 9\right) \left(x - 7\right) = 0$$
We get the quadratic equation
$$- 5 x^{2} + 26 x + 63 = 0$$
This equation is of the form
a*x^2 + b*x + c = 0

A quadratic equation can be solved
using the discriminant.
The roots of the quadratic equation:
$$x_{1} = \frac{\sqrt{D} - b}{2 a}$$
$$x_{2} = \frac{- \sqrt{D} - b}{2 a}$$
where D = b^2 - 4*a*c - it is the discriminant.
Because
$$a = -5$$
$$b = 26$$
$$c = 63$$
, then
D = b^2 - 4 * a * c = 

(26)^2 - 4 * (-5) * (63) = 1936

Because D > 0, then the equation has two roots.
x1 = (-b + sqrt(D)) / (2*a)

x2 = (-b - sqrt(D)) / (2*a)

or
$$x_{1} = - \frac{9}{5}$$
$$x_{2} = 7$$
Rapid solution [src]
x1 = -9/5
$$x_{1} = - \frac{9}{5}$$
x2 = 7
$$x_{2} = 7$$
x2 = 7
Sum and product of roots [src]
sum
7 - 9/5
$$- \frac{9}{5} + 7$$
=
26/5
$$\frac{26}{5}$$
product
7*(-9)
------
  5   
$$\frac{\left(-9\right) 7}{5}$$
=
-63/5
$$- \frac{63}{5}$$
-63/5
Numerical answer [src]
x1 = 7.0
x2 = -1.8
x2 = -1.8