Mister Exam

Other calculators

x-1=1+(1/2)*y equation

The teacher will be very surprised to see your correct solution 😉

v

Numerical solution:

Do search numerical solution at [, ]

The solution

You have entered [src]
            y
x - 1 = 1 + -
            2
$$x - 1 = \frac{y}{2} + 1$$
Detail solution
Given the linear equation:
x-1 = 1+(1/2)*y

Expand brackets in the right part
x-1 = 1+1/2y

Move free summands (without x)
from left part to right part, we given:
$$x = \frac{y}{2} + 2$$
We get the answer: x = 2 + y/2
The graph
Sum and product of roots [src]
sum
    re(y)   I*im(y)
2 + ----- + -------
      2        2   
$$\frac{\operatorname{re}{\left(y\right)}}{2} + \frac{i \operatorname{im}{\left(y\right)}}{2} + 2$$
=
    re(y)   I*im(y)
2 + ----- + -------
      2        2   
$$\frac{\operatorname{re}{\left(y\right)}}{2} + \frac{i \operatorname{im}{\left(y\right)}}{2} + 2$$
product
    re(y)   I*im(y)
2 + ----- + -------
      2        2   
$$\frac{\operatorname{re}{\left(y\right)}}{2} + \frac{i \operatorname{im}{\left(y\right)}}{2} + 2$$
=
    re(y)   I*im(y)
2 + ----- + -------
      2        2   
$$\frac{\operatorname{re}{\left(y\right)}}{2} + \frac{i \operatorname{im}{\left(y\right)}}{2} + 2$$
2 + re(y)/2 + i*im(y)/2
Rapid solution [src]
         re(y)   I*im(y)
x1 = 2 + ----- + -------
           2        2   
$$x_{1} = \frac{\operatorname{re}{\left(y\right)}}{2} + \frac{i \operatorname{im}{\left(y\right)}}{2} + 2$$
x1 = re(y)/2 + i*im(y)/2 + 2