x-1=1+(1/2)*y equation
The teacher will be very surprised to see your correct solution 😉
The solution
Detail solution
Given the linear equation:
x-1 = 1+(1/2)*y
Expand brackets in the right part
x-1 = 1+1/2y
Move free summands (without x)
from left part to right part, we given:
$$x = \frac{y}{2} + 2$$
We get the answer: x = 2 + y/2
Sum and product of roots
[src]
re(y) I*im(y)
2 + ----- + -------
2 2
$$\frac{\operatorname{re}{\left(y\right)}}{2} + \frac{i \operatorname{im}{\left(y\right)}}{2} + 2$$
re(y) I*im(y)
2 + ----- + -------
2 2
$$\frac{\operatorname{re}{\left(y\right)}}{2} + \frac{i \operatorname{im}{\left(y\right)}}{2} + 2$$
re(y) I*im(y)
2 + ----- + -------
2 2
$$\frac{\operatorname{re}{\left(y\right)}}{2} + \frac{i \operatorname{im}{\left(y\right)}}{2} + 2$$
re(y) I*im(y)
2 + ----- + -------
2 2
$$\frac{\operatorname{re}{\left(y\right)}}{2} + \frac{i \operatorname{im}{\left(y\right)}}{2} + 2$$
re(y) I*im(y)
x1 = 2 + ----- + -------
2 2
$$x_{1} = \frac{\operatorname{re}{\left(y\right)}}{2} + \frac{i \operatorname{im}{\left(y\right)}}{2} + 2$$
x1 = re(y)/2 + i*im(y)/2 + 2