Mister Exam

Other calculators

x-4/x-6=0 equation

The teacher will be very surprised to see your correct solution 😉

v

Numerical solution:

Do search numerical solution at [, ]

The solution

You have entered [src]
    4        
x - - - 6 = 0
    x        
$$\left(x - \frac{4}{x}\right) - 6 = 0$$
Detail solution
Given the equation:
$$\left(x - \frac{4}{x}\right) - 6 = 0$$
Multiply the equation sides by the denominators:
and x
we get:
$$x \left(\left(x - \frac{4}{x}\right) - 6\right) = 0 x$$
$$x^{2} - 6 x - 4 = 0$$
This equation is of the form
a*x^2 + b*x + c = 0

A quadratic equation can be solved
using the discriminant.
The roots of the quadratic equation:
$$x_{1} = \frac{\sqrt{D} - b}{2 a}$$
$$x_{2} = \frac{- \sqrt{D} - b}{2 a}$$
where D = b^2 - 4*a*c - it is the discriminant.
Because
$$a = 1$$
$$b = -6$$
$$c = -4$$
, then
D = b^2 - 4 * a * c = 

(-6)^2 - 4 * (1) * (-4) = 52

Because D > 0, then the equation has two roots.
x1 = (-b + sqrt(D)) / (2*a)

x2 = (-b - sqrt(D)) / (2*a)

or
$$x_{1} = 3 + \sqrt{13}$$
$$x_{2} = 3 - \sqrt{13}$$
The graph
Rapid solution [src]
           ____
x1 = 3 - \/ 13 
$$x_{1} = 3 - \sqrt{13}$$
           ____
x2 = 3 + \/ 13 
$$x_{2} = 3 + \sqrt{13}$$
x2 = 3 + sqrt(13)
Sum and product of roots [src]
sum
      ____         ____
3 - \/ 13  + 3 + \/ 13 
$$\left(3 - \sqrt{13}\right) + \left(3 + \sqrt{13}\right)$$
=
6
$$6$$
product
/      ____\ /      ____\
\3 - \/ 13 /*\3 + \/ 13 /
$$\left(3 - \sqrt{13}\right) \left(3 + \sqrt{13}\right)$$
=
-4
$$-4$$
-4
Numerical answer [src]
x1 = -0.605551275463989
x2 = 6.60555127546399
x2 = 6.60555127546399