Given the equation:
$$\left(x - \frac{4}{x}\right) - 6 = 0$$
Multiply the equation sides by the denominators:
and x
we get:
$$x \left(\left(x - \frac{4}{x}\right) - 6\right) = 0 x$$
$$x^{2} - 6 x - 4 = 0$$
This equation is of the form
a*x^2 + b*x + c = 0
A quadratic equation can be solved
using the discriminant.
The roots of the quadratic equation:
$$x_{1} = \frac{\sqrt{D} - b}{2 a}$$
$$x_{2} = \frac{- \sqrt{D} - b}{2 a}$$
where D = b^2 - 4*a*c - it is the discriminant.
Because
$$a = 1$$
$$b = -6$$
$$c = -4$$
, then
D = b^2 - 4 * a * c =
(-6)^2 - 4 * (1) * (-4) = 52
Because D > 0, then the equation has two roots.
x1 = (-b + sqrt(D)) / (2*a)
x2 = (-b - sqrt(D)) / (2*a)
or
$$x_{1} = 3 + \sqrt{13}$$
$$x_{2} = 3 - \sqrt{13}$$