Mister Exam

Other calculators


2x^2+5x-2=0

2x^2+5x-2=0 equation

The teacher will be very surprised to see your correct solution 😉

v

Numerical solution:

Do search numerical solution at [, ]

The solution

You have entered [src]
   2              
2*x  + 5*x - 2 = 0
$$\left(2 x^{2} + 5 x\right) - 2 = 0$$
Detail solution
This equation is of the form
a*x^2 + b*x + c = 0

A quadratic equation can be solved
using the discriminant.
The roots of the quadratic equation:
$$x_{1} = \frac{\sqrt{D} - b}{2 a}$$
$$x_{2} = \frac{- \sqrt{D} - b}{2 a}$$
where D = b^2 - 4*a*c - it is the discriminant.
Because
$$a = 2$$
$$b = 5$$
$$c = -2$$
, then
D = b^2 - 4 * a * c = 

(5)^2 - 4 * (2) * (-2) = 41

Because D > 0, then the equation has two roots.
x1 = (-b + sqrt(D)) / (2*a)

x2 = (-b - sqrt(D)) / (2*a)

or
$$x_{1} = - \frac{5}{4} + \frac{\sqrt{41}}{4}$$
$$x_{2} = - \frac{\sqrt{41}}{4} - \frac{5}{4}$$
Vieta's Theorem
rewrite the equation
$$\left(2 x^{2} + 5 x\right) - 2 = 0$$
of
$$a x^{2} + b x + c = 0$$
as reduced quadratic equation
$$x^{2} + \frac{b x}{a} + \frac{c}{a} = 0$$
$$x^{2} + \frac{5 x}{2} - 1 = 0$$
$$p x + q + x^{2} = 0$$
where
$$p = \frac{b}{a}$$
$$p = \frac{5}{2}$$
$$q = \frac{c}{a}$$
$$q = -1$$
Vieta Formulas
$$x_{1} + x_{2} = - p$$
$$x_{1} x_{2} = q$$
$$x_{1} + x_{2} = - \frac{5}{2}$$
$$x_{1} x_{2} = -1$$
The graph
Rapid solution [src]
             ____
       5   \/ 41 
x1 = - - + ------
       4     4   
$$x_{1} = - \frac{5}{4} + \frac{\sqrt{41}}{4}$$
             ____
       5   \/ 41 
x2 = - - - ------
       4     4   
$$x_{2} = - \frac{\sqrt{41}}{4} - \frac{5}{4}$$
x2 = -sqrt(41)/4 - 5/4
Sum and product of roots [src]
sum
        ____           ____
  5   \/ 41      5   \/ 41 
- - + ------ + - - - ------
  4     4        4     4   
$$\left(- \frac{\sqrt{41}}{4} - \frac{5}{4}\right) + \left(- \frac{5}{4} + \frac{\sqrt{41}}{4}\right)$$
=
-5/2
$$- \frac{5}{2}$$
product
/        ____\ /        ____\
|  5   \/ 41 | |  5   \/ 41 |
|- - + ------|*|- - - ------|
\  4     4   / \  4     4   /
$$\left(- \frac{5}{4} + \frac{\sqrt{41}}{4}\right) \left(- \frac{\sqrt{41}}{4} - \frac{5}{4}\right)$$
=
-1
$$-1$$
-1
Numerical answer [src]
x1 = -2.85078105935821
x2 = 0.350781059358212
x2 = 0.350781059358212
The graph
2x^2+5x-2=0 equation