Mister Exam

Other calculators

2x^2-9*x-8=0 equation

The teacher will be very surprised to see your correct solution 😉

v

Numerical solution:

Do search numerical solution at [, ]

The solution

You have entered [src]
   2              
2*x  - 9*x - 8 = 0
$$\left(2 x^{2} - 9 x\right) - 8 = 0$$
Detail solution
This equation is of the form
a*x^2 + b*x + c = 0

A quadratic equation can be solved
using the discriminant.
The roots of the quadratic equation:
$$x_{1} = \frac{\sqrt{D} - b}{2 a}$$
$$x_{2} = \frac{- \sqrt{D} - b}{2 a}$$
where D = b^2 - 4*a*c - it is the discriminant.
Because
$$a = 2$$
$$b = -9$$
$$c = -8$$
, then
D = b^2 - 4 * a * c = 

(-9)^2 - 4 * (2) * (-8) = 145

Because D > 0, then the equation has two roots.
x1 = (-b + sqrt(D)) / (2*a)

x2 = (-b - sqrt(D)) / (2*a)

or
$$x_{1} = \frac{9}{4} + \frac{\sqrt{145}}{4}$$
$$x_{2} = \frac{9}{4} - \frac{\sqrt{145}}{4}$$
Vieta's Theorem
rewrite the equation
$$\left(2 x^{2} - 9 x\right) - 8 = 0$$
of
$$a x^{2} + b x + c = 0$$
as reduced quadratic equation
$$x^{2} + \frac{b x}{a} + \frac{c}{a} = 0$$
$$x^{2} - \frac{9 x}{2} - 4 = 0$$
$$p x + q + x^{2} = 0$$
where
$$p = \frac{b}{a}$$
$$p = - \frac{9}{2}$$
$$q = \frac{c}{a}$$
$$q = -4$$
Vieta Formulas
$$x_{1} + x_{2} = - p$$
$$x_{1} x_{2} = q$$
$$x_{1} + x_{2} = \frac{9}{2}$$
$$x_{1} x_{2} = -4$$
The graph
Sum and product of roots [src]
sum
      _____         _____
9   \/ 145    9   \/ 145 
- - ------- + - + -------
4      4      4      4   
$$\left(\frac{9}{4} - \frac{\sqrt{145}}{4}\right) + \left(\frac{9}{4} + \frac{\sqrt{145}}{4}\right)$$
=
9/2
$$\frac{9}{2}$$
product
/      _____\ /      _____\
|9   \/ 145 | |9   \/ 145 |
|- - -------|*|- + -------|
\4      4   / \4      4   /
$$\left(\frac{9}{4} - \frac{\sqrt{145}}{4}\right) \left(\frac{9}{4} + \frac{\sqrt{145}}{4}\right)$$
=
-4
$$-4$$
-4
Rapid solution [src]
           _____
     9   \/ 145 
x1 = - - -------
     4      4   
$$x_{1} = \frac{9}{4} - \frac{\sqrt{145}}{4}$$
           _____
     9   \/ 145 
x2 = - + -------
     4      4   
$$x_{2} = \frac{9}{4} + \frac{\sqrt{145}}{4}$$
x2 = 9/4 + sqrt(145)/4
Numerical answer [src]
x1 = -0.760398644698074
x2 = 5.26039864469807
x2 = 5.26039864469807