Mister Exam

Other calculators

2x^2-14*x+10=8 equation

The teacher will be very surprised to see your correct solution 😉

v

Numerical solution:

Do search numerical solution at [, ]

The solution

You have entered [src]
   2                
2*x  - 14*x + 10 = 8
$$\left(2 x^{2} - 14 x\right) + 10 = 8$$
Detail solution
Move right part of the equation to
left part with negative sign.

The equation is transformed from
$$\left(2 x^{2} - 14 x\right) + 10 = 8$$
to
$$\left(\left(2 x^{2} - 14 x\right) + 10\right) - 8 = 0$$
This equation is of the form
a*x^2 + b*x + c = 0

A quadratic equation can be solved
using the discriminant.
The roots of the quadratic equation:
$$x_{1} = \frac{\sqrt{D} - b}{2 a}$$
$$x_{2} = \frac{- \sqrt{D} - b}{2 a}$$
where D = b^2 - 4*a*c - it is the discriminant.
Because
$$a = 2$$
$$b = -14$$
$$c = 2$$
, then
D = b^2 - 4 * a * c = 

(-14)^2 - 4 * (2) * (2) = 180

Because D > 0, then the equation has two roots.
x1 = (-b + sqrt(D)) / (2*a)

x2 = (-b - sqrt(D)) / (2*a)

or
$$x_{1} = \frac{3 \sqrt{5}}{2} + \frac{7}{2}$$
$$x_{2} = \frac{7}{2} - \frac{3 \sqrt{5}}{2}$$
Vieta's Theorem
rewrite the equation
$$\left(2 x^{2} - 14 x\right) + 10 = 8$$
of
$$a x^{2} + b x + c = 0$$
as reduced quadratic equation
$$x^{2} + \frac{b x}{a} + \frac{c}{a} = 0$$
$$x^{2} - 7 x + 1 = 0$$
$$p x + q + x^{2} = 0$$
where
$$p = \frac{b}{a}$$
$$p = -7$$
$$q = \frac{c}{a}$$
$$q = 1$$
Vieta Formulas
$$x_{1} + x_{2} = - p$$
$$x_{1} x_{2} = q$$
$$x_{1} + x_{2} = 7$$
$$x_{1} x_{2} = 1$$
The graph
Sum and product of roots [src]
sum
        ___           ___
7   3*\/ 5    7   3*\/ 5 
- - ------- + - + -------
2      2      2      2   
$$\left(\frac{7}{2} - \frac{3 \sqrt{5}}{2}\right) + \left(\frac{3 \sqrt{5}}{2} + \frac{7}{2}\right)$$
=
7
$$7$$
product
/        ___\ /        ___\
|7   3*\/ 5 | |7   3*\/ 5 |
|- - -------|*|- + -------|
\2      2   / \2      2   /
$$\left(\frac{7}{2} - \frac{3 \sqrt{5}}{2}\right) \left(\frac{3 \sqrt{5}}{2} + \frac{7}{2}\right)$$
=
1
$$1$$
1
Rapid solution [src]
             ___
     7   3*\/ 5 
x1 = - - -------
     2      2   
$$x_{1} = \frac{7}{2} - \frac{3 \sqrt{5}}{2}$$
             ___
     7   3*\/ 5 
x2 = - + -------
     2      2   
$$x_{2} = \frac{3 \sqrt{5}}{2} + \frac{7}{2}$$
x2 = 3*sqrt(5)/2 + 7/2
Numerical answer [src]
x1 = 0.145898033750315
x2 = 6.85410196624968
x2 = 6.85410196624968