Mister Exam

Other calculators


2x^2-9x+15=0

2x^2-9x+15=0 equation

The teacher will be very surprised to see your correct solution 😉

v

Numerical solution:

Do search numerical solution at [, ]

The solution

You have entered [src]
   2               
2*x  - 9*x + 15 = 0
$$\left(2 x^{2} - 9 x\right) + 15 = 0$$
Detail solution
This equation is of the form
a*x^2 + b*x + c = 0

A quadratic equation can be solved
using the discriminant.
The roots of the quadratic equation:
$$x_{1} = \frac{\sqrt{D} - b}{2 a}$$
$$x_{2} = \frac{- \sqrt{D} - b}{2 a}$$
where D = b^2 - 4*a*c - it is the discriminant.
Because
$$a = 2$$
$$b = -9$$
$$c = 15$$
, then
D = b^2 - 4 * a * c = 

(-9)^2 - 4 * (2) * (15) = -39

Because D<0, then the equation
has no real roots,
but complex roots is exists.
x1 = (-b + sqrt(D)) / (2*a)

x2 = (-b - sqrt(D)) / (2*a)

or
$$x_{1} = \frac{9}{4} + \frac{\sqrt{39} i}{4}$$
$$x_{2} = \frac{9}{4} - \frac{\sqrt{39} i}{4}$$
Vieta's Theorem
rewrite the equation
$$\left(2 x^{2} - 9 x\right) + 15 = 0$$
of
$$a x^{2} + b x + c = 0$$
as reduced quadratic equation
$$x^{2} + \frac{b x}{a} + \frac{c}{a} = 0$$
$$x^{2} - \frac{9 x}{2} + \frac{15}{2} = 0$$
$$p x + q + x^{2} = 0$$
where
$$p = \frac{b}{a}$$
$$p = - \frac{9}{2}$$
$$q = \frac{c}{a}$$
$$q = \frac{15}{2}$$
Vieta Formulas
$$x_{1} + x_{2} = - p$$
$$x_{1} x_{2} = q$$
$$x_{1} + x_{2} = \frac{9}{2}$$
$$x_{1} x_{2} = \frac{15}{2}$$
The graph
Sum and product of roots [src]
sum
        ____           ____
9   I*\/ 39    9   I*\/ 39 
- - -------- + - + --------
4      4       4      4    
$$\left(\frac{9}{4} - \frac{\sqrt{39} i}{4}\right) + \left(\frac{9}{4} + \frac{\sqrt{39} i}{4}\right)$$
=
9/2
$$\frac{9}{2}$$
product
/        ____\ /        ____\
|9   I*\/ 39 | |9   I*\/ 39 |
|- - --------|*|- + --------|
\4      4    / \4      4    /
$$\left(\frac{9}{4} - \frac{\sqrt{39} i}{4}\right) \left(\frac{9}{4} + \frac{\sqrt{39} i}{4}\right)$$
=
15/2
$$\frac{15}{2}$$
15/2
Rapid solution [src]
             ____
     9   I*\/ 39 
x1 = - - --------
     4      4    
$$x_{1} = \frac{9}{4} - \frac{\sqrt{39} i}{4}$$
             ____
     9   I*\/ 39 
x2 = - + --------
     4      4    
$$x_{2} = \frac{9}{4} + \frac{\sqrt{39} i}{4}$$
x2 = 9/4 + sqrt(39)*i/4
Numerical answer [src]
x1 = 2.25 - 1.5612494995996*i
x2 = 2.25 + 1.5612494995996*i
x2 = 2.25 + 1.5612494995996*i
The graph
2x^2-9x+15=0 equation