Mister Exam

Other calculators

2^10*x2-8*x-23+2^5*x2-4*x-12-3=0 equation

The teacher will be very surprised to see your correct solution 😉

v

Numerical solution:

Do search numerical solution at [, ]

The solution

You have entered [src]
1024*x2 - 8*x - 23 + 32*x2 - 4*x - 12 - 3 = 0
$$\left(\left(- 4 x + \left(32 x_{2} + \left(\left(- 8 x + 1024 x_{2}\right) - 23\right)\right)\right) - 12\right) - 3 = 0$$
The graph
Sum and product of roots [src]
sum
-19/6 + 88*re(x2) + 88*I*im(x2)
$$88 \operatorname{re}{\left(x_{2}\right)} + 88 i \operatorname{im}{\left(x_{2}\right)} - \frac{19}{6}$$
=
-19/6 + 88*re(x2) + 88*I*im(x2)
$$88 \operatorname{re}{\left(x_{2}\right)} + 88 i \operatorname{im}{\left(x_{2}\right)} - \frac{19}{6}$$
product
-19/6 + 88*re(x2) + 88*I*im(x2)
$$88 \operatorname{re}{\left(x_{2}\right)} + 88 i \operatorname{im}{\left(x_{2}\right)} - \frac{19}{6}$$
=
-19/6 + 88*re(x2) + 88*I*im(x2)
$$88 \operatorname{re}{\left(x_{2}\right)} + 88 i \operatorname{im}{\left(x_{2}\right)} - \frac{19}{6}$$
-19/6 + 88*re(x2) + 88*i*im(x2)
Rapid solution [src]
x1 = -19/6 + 88*re(x2) + 88*I*im(x2)
$$x_{1} = 88 \operatorname{re}{\left(x_{2}\right)} + 88 i \operatorname{im}{\left(x_{2}\right)} - \frac{19}{6}$$
x1 = 88*re(x2) + 88*i*im(x2) - 19/6