2^10*x2-8*x-23+2^5*x2-4*x-12-3=0 equation
The teacher will be very surprised to see your correct solution 😉
The solution
Sum and product of roots
[src]
-19/6 + 88*re(x2) + 88*I*im(x2)
$$88 \operatorname{re}{\left(x_{2}\right)} + 88 i \operatorname{im}{\left(x_{2}\right)} - \frac{19}{6}$$
-19/6 + 88*re(x2) + 88*I*im(x2)
$$88 \operatorname{re}{\left(x_{2}\right)} + 88 i \operatorname{im}{\left(x_{2}\right)} - \frac{19}{6}$$
-19/6 + 88*re(x2) + 88*I*im(x2)
$$88 \operatorname{re}{\left(x_{2}\right)} + 88 i \operatorname{im}{\left(x_{2}\right)} - \frac{19}{6}$$
-19/6 + 88*re(x2) + 88*I*im(x2)
$$88 \operatorname{re}{\left(x_{2}\right)} + 88 i \operatorname{im}{\left(x_{2}\right)} - \frac{19}{6}$$
-19/6 + 88*re(x2) + 88*i*im(x2)
x1 = -19/6 + 88*re(x2) + 88*I*im(x2)
$$x_{1} = 88 \operatorname{re}{\left(x_{2}\right)} + 88 i \operatorname{im}{\left(x_{2}\right)} - \frac{19}{6}$$
x1 = 88*re(x2) + 88*i*im(x2) - 19/6