Mister Exam

Other calculators

2*x^2+1 equation

The teacher will be very surprised to see your correct solution 😉

v

Numerical solution:

Do search numerical solution at [, ]

The solution

You have entered [src]
   2        
2*x  + 1 = 0
$$2 x^{2} + 1 = 0$$
Detail solution
This equation is of the form
a*x^2 + b*x + c = 0

A quadratic equation can be solved
using the discriminant.
The roots of the quadratic equation:
$$x_{1} = \frac{\sqrt{D} - b}{2 a}$$
$$x_{2} = \frac{- \sqrt{D} - b}{2 a}$$
where D = b^2 - 4*a*c - it is the discriminant.
Because
$$a = 2$$
$$b = 0$$
$$c = 1$$
, then
D = b^2 - 4 * a * c = 

(0)^2 - 4 * (2) * (1) = -8

Because D<0, then the equation
has no real roots,
but complex roots is exists.
x1 = (-b + sqrt(D)) / (2*a)

x2 = (-b - sqrt(D)) / (2*a)

or
$$x_{1} = \frac{\sqrt{2} i}{2}$$
$$x_{2} = - \frac{\sqrt{2} i}{2}$$
Vieta's Theorem
rewrite the equation
$$2 x^{2} + 1 = 0$$
of
$$a x^{2} + b x + c = 0$$
as reduced quadratic equation
$$x^{2} + \frac{b x}{a} + \frac{c}{a} = 0$$
$$x^{2} + \frac{1}{2} = 0$$
$$p x + q + x^{2} = 0$$
where
$$p = \frac{b}{a}$$
$$p = 0$$
$$q = \frac{c}{a}$$
$$q = \frac{1}{2}$$
Vieta Formulas
$$x_{1} + x_{2} = - p$$
$$x_{1} x_{2} = q$$
$$x_{1} + x_{2} = 0$$
$$x_{1} x_{2} = \frac{1}{2}$$
The graph
Rapid solution [src]
          ___ 
     -I*\/ 2  
x1 = ---------
         2    
$$x_{1} = - \frac{\sqrt{2} i}{2}$$
         ___
     I*\/ 2 
x2 = -------
        2   
$$x_{2} = \frac{\sqrt{2} i}{2}$$
x2 = sqrt(2)*i/2
Sum and product of roots [src]
sum
      ___       ___
  I*\/ 2    I*\/ 2 
- ------- + -------
     2         2   
$$- \frac{\sqrt{2} i}{2} + \frac{\sqrt{2} i}{2}$$
=
0
$$0$$
product
     ___      ___
-I*\/ 2   I*\/ 2 
---------*-------
    2        2   
$$- \frac{\sqrt{2} i}{2} \frac{\sqrt{2} i}{2}$$
=
1/2
$$\frac{1}{2}$$
1/2
Numerical answer [src]
x1 = -0.707106781186548*i
x2 = 0.707106781186548*i
x2 = 0.707106781186548*i