Expand the expression in the equation
$$\left(\left(z^{2} - z \left(2 - i\right)\right) + 3\right) - i = 0$$
We get the quadratic equation
$$z^{2} - 2 z + i z + 3 - i = 0$$
This equation is of the form
a*z^2 + b*z + c = 0
A quadratic equation can be solved
using the discriminant.
The roots of the quadratic equation:
$$z_{1} = \frac{\sqrt{D} - b}{2 a}$$
$$z_{2} = \frac{- \sqrt{D} - b}{2 a}$$
where D = b^2 - 4*a*c - it is the discriminant.
Because
$$a = 1$$
$$b = -2 + i$$
$$c = 3 - i$$
, then
D = b^2 - 4 * a * c =
(-2 + i)^2 - 4 * (1) * (3 - i) = -12 + (-2 + i)^2 + 4*i
The equation has two roots.
z1 = (-b + sqrt(D)) / (2*a)
z2 = (-b - sqrt(D)) / (2*a)
or
$$z_{1} = 1 - \frac{i}{2} + \frac{\sqrt{-12 + \left(-2 + i\right)^{2} + 4 i}}{2}$$
$$z_{2} = 1 - \frac{\sqrt{-12 + \left(-2 + i\right)^{2} + 4 i}}{2} - \frac{i}{2}$$