Mister Exam

Other calculators


2*sin(x)-3=0

2*sin(x)-3=0 equation

The teacher will be very surprised to see your correct solution 😉

v

Numerical solution:

Do search numerical solution at [, ]

The solution

You have entered [src]
2*sin(x) - 3 = 0
$$2 \sin{\left(x \right)} - 3 = 0$$
Detail solution
Given the equation
$$2 \sin{\left(x \right)} - 3 = 0$$
- this is the simplest trigonometric equation
Move -3 to right part of the equation

with the change of sign in -3

We get:
$$2 \sin{\left(x \right)} = 3$$
Divide both parts of the equation by 2

The equation is transformed to
$$\sin{\left(x \right)} = \frac{3}{2}$$
As right part of the equation
modulo =
True

but sin
can no be more than 1 or less than -1
so the solution of the equation d'not exist.
The graph
Rapid solution [src]
x1 = pi - re(asin(3/2)) - I*im(asin(3/2))
$$x_{1} = - \operatorname{re}{\left(\operatorname{asin}{\left(\frac{3}{2} \right)}\right)} + \pi - i \operatorname{im}{\left(\operatorname{asin}{\left(\frac{3}{2} \right)}\right)}$$
x2 = I*im(asin(3/2)) + re(asin(3/2))
$$x_{2} = \operatorname{re}{\left(\operatorname{asin}{\left(\frac{3}{2} \right)}\right)} + i \operatorname{im}{\left(\operatorname{asin}{\left(\frac{3}{2} \right)}\right)}$$
x2 = re(asin(3/2)) + i*im(asin(3/2))
Sum and product of roots [src]
sum
pi - re(asin(3/2)) - I*im(asin(3/2)) + I*im(asin(3/2)) + re(asin(3/2))
$$\left(\operatorname{re}{\left(\operatorname{asin}{\left(\frac{3}{2} \right)}\right)} + i \operatorname{im}{\left(\operatorname{asin}{\left(\frac{3}{2} \right)}\right)}\right) + \left(- \operatorname{re}{\left(\operatorname{asin}{\left(\frac{3}{2} \right)}\right)} + \pi - i \operatorname{im}{\left(\operatorname{asin}{\left(\frac{3}{2} \right)}\right)}\right)$$
=
pi
$$\pi$$
product
(pi - re(asin(3/2)) - I*im(asin(3/2)))*(I*im(asin(3/2)) + re(asin(3/2)))
$$\left(\operatorname{re}{\left(\operatorname{asin}{\left(\frac{3}{2} \right)}\right)} + i \operatorname{im}{\left(\operatorname{asin}{\left(\frac{3}{2} \right)}\right)}\right) \left(- \operatorname{re}{\left(\operatorname{asin}{\left(\frac{3}{2} \right)}\right)} + \pi - i \operatorname{im}{\left(\operatorname{asin}{\left(\frac{3}{2} \right)}\right)}\right)$$
=
-(I*im(asin(3/2)) + re(asin(3/2)))*(-pi + I*im(asin(3/2)) + re(asin(3/2)))
$$- \left(\operatorname{re}{\left(\operatorname{asin}{\left(\frac{3}{2} \right)}\right)} + i \operatorname{im}{\left(\operatorname{asin}{\left(\frac{3}{2} \right)}\right)}\right) \left(- \pi + \operatorname{re}{\left(\operatorname{asin}{\left(\frac{3}{2} \right)}\right)} + i \operatorname{im}{\left(\operatorname{asin}{\left(\frac{3}{2} \right)}\right)}\right)$$
-(i*im(asin(3/2)) + re(asin(3/2)))*(-pi + i*im(asin(3/2)) + re(asin(3/2)))
Numerical answer [src]
x1 = 1.5707963267949 + 0.962423650119207*i
x2 = 1.5707963267949 - 0.962423650119207*i
x2 = 1.5707963267949 - 0.962423650119207*i
The graph
2*sin(x)-3=0 equation