Given the equation
$$2 \left(4 + \frac{1}{x^{3}}\right) = 0$$
Because equation degree is equal to = -3 - does not contain even numbers in the numerator, then
the equation has single real root.
Get the root -3-th degree of the equation sides:
We get:
$$\frac{1}{\sqrt[3]{2} \sqrt[3]{\frac{1}{x^{3}}}} = \frac{1}{\sqrt[3]{-8}}$$
or
$$\frac{2^{\frac{2}{3}} x}{2} = - \frac{\left(-1\right)^{\frac{2}{3}}}{2}$$
Expand brackets in the left part
x*2^2/3/2 = -(-1)^(2/3)/2
Expand brackets in the right part
x*2^2/3/2 = 1^2/3/2
Divide both parts of the equation by 2^(2/3)/2
x = -(-1)^(2/3)/2 / (2^(2/3)/2)
We get the answer: x = -(-1)^(2/3)*2^(1/3)/2
All other 2 root(s) is the complex numbers.
do replacement:
$$z = x$$
then the equation will be the:
$$\frac{1}{z^{3}} = -4$$
Any complex number can presented so:
$$z = r e^{i p}$$
substitute to the equation
$$\frac{e^{- 3 i p}}{r^{3}} = -4$$
where
$$r = \frac{\sqrt[3]{2}}{2}$$
- the magnitude of the complex number
Substitute r:
$$e^{- 3 i p} = -1$$
Using Euler’s formula, we find roots for p
$$- i \sin{\left(3 p \right)} + \cos{\left(3 p \right)} = -1$$
so
$$\cos{\left(3 p \right)} = -1$$
and
$$- \sin{\left(3 p \right)} = 0$$
then
$$p = - \frac{2 \pi N}{3} - \frac{\pi}{3}$$
where N=0,1,2,3,...
Looping through the values of N and substituting p into the formula for z
Consequently, the solution will be for z:
$$z_{1} = - \frac{\sqrt[3]{2}}{2}$$
$$z_{2} = \frac{\sqrt[3]{2}}{4} - \frac{\sqrt[3]{2} \sqrt{3} i}{4}$$
$$z_{3} = \frac{\sqrt[3]{2}}{4} + \frac{\sqrt[3]{2} \sqrt{3} i}{4}$$
do backward replacement
$$z = x$$
$$x = z$$
The final answer:
$$x_{1} = - \frac{\sqrt[3]{2}}{2}$$
$$x_{2} = \frac{\sqrt[3]{2}}{4} - \frac{\sqrt[3]{2} \sqrt{3} i}{4}$$
$$x_{3} = \frac{\sqrt[3]{2}}{4} + \frac{\sqrt[3]{2} \sqrt{3} i}{4}$$