Mister Exam

Other calculators


3^x=2

3^x=2 equation

The teacher will be very surprised to see your correct solution 😉

v

Numerical solution:

Do search numerical solution at [, ]

The solution

You have entered [src]
 x    
3  = 2
$$3^{x} = 2$$
Detail solution
Given the equation:
$$3^{x} = 2$$
or
$$3^{x} - 2 = 0$$
or
$$3^{x} = 2$$
or
$$3^{x} = 2$$
- this is the simplest exponential equation
Do replacement
$$v = 3^{x}$$
we get
$$v - 2 = 0$$
or
$$v - 2 = 0$$
Move free summands (without v)
from left part to right part, we given:
$$v = 2$$
We get the answer: v = 2
do backward replacement
$$3^{x} = v$$
or
$$x = \frac{\log{\left(v \right)}}{\log{\left(3 \right)}}$$
The final answer
$$x_{1} = \frac{\log{\left(2 \right)}}{\log{\left(3 \right)}} = \frac{\log{\left(2 \right)}}{\log{\left(3 \right)}}$$
The graph
Sum and product of roots [src]
sum
log(2)
------
log(3)
$$\frac{\log{\left(2 \right)}}{\log{\left(3 \right)}}$$
=
log(2)
------
log(3)
$$\frac{\log{\left(2 \right)}}{\log{\left(3 \right)}}$$
product
log(2)
------
log(3)
$$\frac{\log{\left(2 \right)}}{\log{\left(3 \right)}}$$
=
log(2)
------
log(3)
$$\frac{\log{\left(2 \right)}}{\log{\left(3 \right)}}$$
log(2)/log(3)
Rapid solution [src]
     log(2)
x1 = ------
     log(3)
$$x_{1} = \frac{\log{\left(2 \right)}}{\log{\left(3 \right)}}$$
x1 = log(2)/log(3)
Numerical answer [src]
x1 = 0.630929753571457
x1 = 0.630929753571457
The graph
3^x=2 equation