Mister Exam

Other calculators


(3/2)^x=16/81

(3/2)^x=16/81 equation

The teacher will be very surprised to see your correct solution 😉

v

Numerical solution:

Do search numerical solution at [, ]

The solution

You have entered [src]
   x   16
3/2  = --
       81
$$\left(\frac{3}{2}\right)^{x} = \frac{16}{81}$$
Detail solution
Given the equation:
$$\left(\frac{3}{2}\right)^{x} = \frac{16}{81}$$
or
$$\left(\frac{3}{2}\right)^{x} - \frac{16}{81} = 0$$
or
$$\left(\frac{3}{2}\right)^{x} = \frac{16}{81}$$
or
$$\left(\frac{3}{2}\right)^{x} = \frac{16}{81}$$
- this is the simplest exponential equation
Do replacement
$$v = \left(\frac{3}{2}\right)^{x}$$
we get
$$v - \frac{16}{81} = 0$$
or
$$v - \frac{16}{81} = 0$$
Move free summands (without v)
from left part to right part, we given:
$$v = \frac{16}{81}$$
We get the answer: v = 16/81
do backward replacement
$$\left(\frac{3}{2}\right)^{x} = v$$
or
$$x = \frac{\log{\left(v \right)}}{\log{\left(\frac{3}{2} \right)}}$$
The final answer
$$x_{1} = \frac{\log{\left(\frac{16}{81} \right)}}{\log{\left(\frac{3}{2} \right)}} = -4$$
The graph
Rapid solution [src]
x1 = -4
$$x_{1} = -4$$
Sum and product of roots [src]
sum
0 - 4
$$-4 + 0$$
=
-4
$$-4$$
product
1*-4
$$1 \left(-4\right)$$
=
-4
$$-4$$
-4
Numerical answer [src]
x1 = -4.0
x1 = -4.0
The graph
(3/2)^x=16/81 equation