(3/2)^x=16/81 equation
The teacher will be very surprised to see your correct solution 😉
The solution
Detail solution
Given the equation:
$$\left(\frac{3}{2}\right)^{x} = \frac{16}{81}$$
or
$$\left(\frac{3}{2}\right)^{x} - \frac{16}{81} = 0$$
or
$$\left(\frac{3}{2}\right)^{x} = \frac{16}{81}$$
or
$$\left(\frac{3}{2}\right)^{x} = \frac{16}{81}$$
- this is the simplest exponential equation
Do replacement
$$v = \left(\frac{3}{2}\right)^{x}$$
we get
$$v - \frac{16}{81} = 0$$
or
$$v - \frac{16}{81} = 0$$
Move free summands (without v)
from left part to right part, we given:
$$v = \frac{16}{81}$$
We get the answer: v = 16/81
do backward replacement
$$\left(\frac{3}{2}\right)^{x} = v$$
or
$$x = \frac{\log{\left(v \right)}}{\log{\left(\frac{3}{2} \right)}}$$
The final answer
$$x_{1} = \frac{\log{\left(\frac{16}{81} \right)}}{\log{\left(\frac{3}{2} \right)}} = -4$$
Sum and product of roots
[src]
$$-4 + 0$$
$$-4$$
$$1 \left(-4\right)$$
$$-4$$