Mister Exam

Other calculators


sqrt(5/15-x)=1

sqrt(5/15-x)=1 equation

The teacher will be very surprised to see your correct solution 😉

v

Numerical solution:

Do search numerical solution at [, ]

The solution

You have entered [src]
  _________    
\/ 1/3 - x  = 1
$$\sqrt{- x + \frac{1}{3}} = 1$$
Detail solution
Given the equation
$$\sqrt{- x + \frac{1}{3}} = 1$$
Because equation degree is equal to = 1/2 - does not contain even numbers in the numerator, then
the equation has single real root.
We raise the equation sides to 2-th degree:
We get:
$$\left(\sqrt{- x + \frac{1}{3}}\right)^{2} = 1^{2}$$
or
$$- x + \frac{1}{3} = 1$$
Move free summands (without x)
from left part to right part, we given:
$$- x = \frac{2}{3}$$
Divide both parts of the equation by -1
x = 2/3 / (-1)

We get the answer: x = -2/3

The final answer:
$$x_{1} = - \frac{2}{3}$$
The graph
Sum and product of roots [src]
sum
-2/3
$$\left(- \frac{2}{3}\right)$$
=
-2/3
$$- \frac{2}{3}$$
product
-2/3
$$\left(- \frac{2}{3}\right)$$
=
-2/3
$$- \frac{2}{3}$$
Rapid solution [src]
x_1 = -2/3
$$x_{1} = - \frac{2}{3}$$
Numerical answer [src]
x1 = -0.666666666666667
x2 = -0.66666666666667 - 5.61950927106415e-15*i
x3 = -0.666666666666667 - 4.47865852143731e-19*i
x3 = -0.666666666666667 - 4.47865852143731e-19*i
The graph
sqrt(5/15-x)=1 equation