sinz=-2 equation
The teacher will be very surprised to see your correct solution 😉
The solution
Detail solution
Given the equation
$$\sin{\left(z \right)} = -2$$
- this is the simplest trigonometric equation
As right part of the equation
modulo =
True
but sin
can no be more than 1 or less than -1
so the solution of the equation d'not exist.
Sum and product of roots
[src]
pi + I*im(asin(2)) + re(asin(2)) + -re(asin(2)) - I*im(asin(2))
$$\left(\operatorname{re}{\left(\operatorname{asin}{\left(2 \right)}\right)} + \pi + i \operatorname{im}{\left(\operatorname{asin}{\left(2 \right)}\right)}\right) + \left(- \operatorname{re}{\left(\operatorname{asin}{\left(2 \right)}\right)} - i \operatorname{im}{\left(\operatorname{asin}{\left(2 \right)}\right)}\right)$$
$$\pi$$
(pi + I*im(asin(2)) + re(asin(2)))*(-re(asin(2)) - I*im(asin(2)))
$$\left(- \operatorname{re}{\left(\operatorname{asin}{\left(2 \right)}\right)} - i \operatorname{im}{\left(\operatorname{asin}{\left(2 \right)}\right)}\right) \left(\operatorname{re}{\left(\operatorname{asin}{\left(2 \right)}\right)} + \pi + i \operatorname{im}{\left(\operatorname{asin}{\left(2 \right)}\right)}\right)$$
-(I*im(asin(2)) + re(asin(2)))*(pi + I*im(asin(2)) + re(asin(2)))
$$- \left(\operatorname{re}{\left(\operatorname{asin}{\left(2 \right)}\right)} + i \operatorname{im}{\left(\operatorname{asin}{\left(2 \right)}\right)}\right) \left(\operatorname{re}{\left(\operatorname{asin}{\left(2 \right)}\right)} + \pi + i \operatorname{im}{\left(\operatorname{asin}{\left(2 \right)}\right)}\right)$$
-(i*im(asin(2)) + re(asin(2)))*(pi + i*im(asin(2)) + re(asin(2)))
z1 = pi + I*im(asin(2)) + re(asin(2))
$$z_{1} = \operatorname{re}{\left(\operatorname{asin}{\left(2 \right)}\right)} + \pi + i \operatorname{im}{\left(\operatorname{asin}{\left(2 \right)}\right)}$$
z2 = -re(asin(2)) - I*im(asin(2))
$$z_{2} = - \operatorname{re}{\left(\operatorname{asin}{\left(2 \right)}\right)} - i \operatorname{im}{\left(\operatorname{asin}{\left(2 \right)}\right)}$$
z2 = -re(asin(2)) - i*im(asin(2))
z1 = 4.71238898038469 - 1.31695789692482*i
z2 = -1.5707963267949 + 1.31695789692482*i
z2 = -1.5707963267949 + 1.31695789692482*i