sin(z)=4,5 equation
The teacher will be very surprised to see your correct solution 😉
The solution
Detail solution
Given the equation
$$\sin{\left(z \right)} = \frac{9}{2}$$
- this is the simplest trigonometric equation
As right part of the equation
modulo =
True
but sin
can no be more than 1 or less than -1
so the solution of the equation d'not exist.
Sum and product of roots
[src]
pi - re(asin(9/2)) - I*im(asin(9/2)) + I*im(asin(9/2)) + re(asin(9/2))
$$\left(\operatorname{re}{\left(\operatorname{asin}{\left(\frac{9}{2} \right)}\right)} + i \operatorname{im}{\left(\operatorname{asin}{\left(\frac{9}{2} \right)}\right)}\right) + \left(- \operatorname{re}{\left(\operatorname{asin}{\left(\frac{9}{2} \right)}\right)} + \pi - i \operatorname{im}{\left(\operatorname{asin}{\left(\frac{9}{2} \right)}\right)}\right)$$
$$\pi$$
(pi - re(asin(9/2)) - I*im(asin(9/2)))*(I*im(asin(9/2)) + re(asin(9/2)))
$$\left(\operatorname{re}{\left(\operatorname{asin}{\left(\frac{9}{2} \right)}\right)} + i \operatorname{im}{\left(\operatorname{asin}{\left(\frac{9}{2} \right)}\right)}\right) \left(- \operatorname{re}{\left(\operatorname{asin}{\left(\frac{9}{2} \right)}\right)} + \pi - i \operatorname{im}{\left(\operatorname{asin}{\left(\frac{9}{2} \right)}\right)}\right)$$
-(I*im(asin(9/2)) + re(asin(9/2)))*(-pi + I*im(asin(9/2)) + re(asin(9/2)))
$$- \left(\operatorname{re}{\left(\operatorname{asin}{\left(\frac{9}{2} \right)}\right)} + i \operatorname{im}{\left(\operatorname{asin}{\left(\frac{9}{2} \right)}\right)}\right) \left(- \pi + \operatorname{re}{\left(\operatorname{asin}{\left(\frac{9}{2} \right)}\right)} + i \operatorname{im}{\left(\operatorname{asin}{\left(\frac{9}{2} \right)}\right)}\right)$$
-(i*im(asin(9/2)) + re(asin(9/2)))*(-pi + i*im(asin(9/2)) + re(asin(9/2)))
z1 = pi - re(asin(9/2)) - I*im(asin(9/2))
$$z_{1} = - \operatorname{re}{\left(\operatorname{asin}{\left(\frac{9}{2} \right)}\right)} + \pi - i \operatorname{im}{\left(\operatorname{asin}{\left(\frac{9}{2} \right)}\right)}$$
z2 = I*im(asin(9/2)) + re(asin(9/2))
$$z_{2} = \operatorname{re}{\left(\operatorname{asin}{\left(\frac{9}{2} \right)}\right)} + i \operatorname{im}{\left(\operatorname{asin}{\left(\frac{9}{2} \right)}\right)}$$
z2 = re(asin(9/2)) + i*im(asin(9/2))
z1 = 1.5707963267949 + 2.18464379160511*i
z2 = 1.5707963267949 - 2.18464379160511*i
z2 = 1.5707963267949 - 2.18464379160511*i