Mister Exam

Other calculators


sin(x)=3

sin(x)=3 equation

The teacher will be very surprised to see your correct solution 😉

v

Numerical solution:

Do search numerical solution at [, ]

The solution

You have entered [src]
sin(x) = 3
$$\sin{\left(x \right)} = 3$$
Detail solution
Given the equation
$$\sin{\left(x \right)} = 3$$
- this is the simplest trigonometric equation
As right part of the equation
modulo =
True

but sin
can no be more than 1 or less than -1
so the solution of the equation d'not exist.
The graph
Rapid solution [src]
x1 = pi - re(asin(3)) - I*im(asin(3))
$$x_{1} = - \operatorname{re}{\left(\operatorname{asin}{\left(3 \right)}\right)} + \pi - i \operatorname{im}{\left(\operatorname{asin}{\left(3 \right)}\right)}$$
x2 = I*im(asin(3)) + re(asin(3))
$$x_{2} = \operatorname{re}{\left(\operatorname{asin}{\left(3 \right)}\right)} + i \operatorname{im}{\left(\operatorname{asin}{\left(3 \right)}\right)}$$
Sum and product of roots [src]
sum
0 + pi - re(asin(3)) - I*im(asin(3)) + I*im(asin(3)) + re(asin(3))
$$\left(\operatorname{re}{\left(\operatorname{asin}{\left(3 \right)}\right)} + i \operatorname{im}{\left(\operatorname{asin}{\left(3 \right)}\right)}\right) - \left(- \pi + \operatorname{re}{\left(\operatorname{asin}{\left(3 \right)}\right)} + i \operatorname{im}{\left(\operatorname{asin}{\left(3 \right)}\right)}\right)$$
=
pi
$$\pi$$
product
1*(pi - re(asin(3)) - I*im(asin(3)))*(I*im(asin(3)) + re(asin(3)))
$$\left(\operatorname{re}{\left(\operatorname{asin}{\left(3 \right)}\right)} + i \operatorname{im}{\left(\operatorname{asin}{\left(3 \right)}\right)}\right) 1 \left(- \operatorname{re}{\left(\operatorname{asin}{\left(3 \right)}\right)} + \pi - i \operatorname{im}{\left(\operatorname{asin}{\left(3 \right)}\right)}\right)$$
=
-(I*im(asin(3)) + re(asin(3)))*(-pi + I*im(asin(3)) + re(asin(3)))
$$- \left(\operatorname{re}{\left(\operatorname{asin}{\left(3 \right)}\right)} + i \operatorname{im}{\left(\operatorname{asin}{\left(3 \right)}\right)}\right) \left(- \pi + \operatorname{re}{\left(\operatorname{asin}{\left(3 \right)}\right)} + i \operatorname{im}{\left(\operatorname{asin}{\left(3 \right)}\right)}\right)$$
-(i*im(asin(3)) + re(asin(3)))*(-pi + i*im(asin(3)) + re(asin(3)))
Numerical answer [src]
x1 = 1.5707963267949 + 1.76274717403909*i
x2 = 1.5707963267949 - 1.76274717403909*i
x2 = 1.5707963267949 - 1.76274717403909*i
The graph
sin(x)=3 equation