2sin*x/2=√3 equation
The teacher will be very surprised to see your correct solution 😉
The solution
Detail solution
Given the equation
22sin(x)=3- this is the simplest trigonometric equation
As right part of the equation
modulo =
True
but sin
can no be more than 1 or less than -1
so the solution of the equation d'not exist.
The graph
/ / ___\\ / / ___\\
x1 = pi - re\asin\\/ 3 // - I*im\asin\\/ 3 //
x1=−re(asin(3))+π−iim(asin(3))
/ / ___\\ / / ___\\
x2 = I*im\asin\\/ 3 // + re\asin\\/ 3 //
x2=re(asin(3))+iim(asin(3))
x2 = re(asin(sqrt(3))) + i*im(asin(sqrt(3)))
Sum and product of roots
[src]
/ / ___\\ / / ___\\ / / ___\\ / / ___\\
pi - re\asin\\/ 3 // - I*im\asin\\/ 3 // + I*im\asin\\/ 3 // + re\asin\\/ 3 //
(re(asin(3))+iim(asin(3)))+(−re(asin(3))+π−iim(asin(3)))
/ / / ___\\ / / ___\\\ / / / ___\\ / / ___\\\
\pi - re\asin\\/ 3 // - I*im\asin\\/ 3 ///*\I*im\asin\\/ 3 // + re\asin\\/ 3 ///
(re(asin(3))+iim(asin(3)))(−re(asin(3))+π−iim(asin(3)))
/ / / ___\\ / / ___\\\ / / / ___\\ / / ___\\\
-\I*im\asin\\/ 3 // + re\asin\\/ 3 ///*\-pi + I*im\asin\\/ 3 // + re\asin\\/ 3 ///
−(re(asin(3))+iim(asin(3)))(−π+re(asin(3))+iim(asin(3)))
-(i*im(asin(sqrt(3))) + re(asin(sqrt(3))))*(-pi + i*im(asin(sqrt(3))) + re(asin(sqrt(3))))
x1 = 1.5707963267949 + 1.14621583478059*i
x2 = 1.5707963267949 - 1.14621583478059*i
x2 = 1.5707963267949 - 1.14621583478059*i