Mister Exam

其他计算器


sin(x)=10

sin(x)=10 方程

有了正确解答,你会成为小组里最受欢迎的人❤️😊

v

数值解:

在区间内寻找数值解 [, ]

解答

You have entered [src]
sin(x) = 10
$$\sin{\left(x \right)} = 10$$
Detail solution
Given the equation
$$\sin{\left(x \right)} = 10$$
- this is the simplest trigonometric equation
As right part of the equation
modulo =
True

but sin
can no be more than 1 or less than -1
so the solution of the equation d'not exist.
The graph
Rapid solution [src]
x1 = pi - re(asin(10)) - I*im(asin(10))
$$x_{1} = - \operatorname{re}{\left(\operatorname{asin}{\left(10 \right)}\right)} + \pi - i \operatorname{im}{\left(\operatorname{asin}{\left(10 \right)}\right)}$$
x2 = I*im(asin(10)) + re(asin(10))
$$x_{2} = \operatorname{re}{\left(\operatorname{asin}{\left(10 \right)}\right)} + i \operatorname{im}{\left(\operatorname{asin}{\left(10 \right)}\right)}$$
x2 = re(asin(10)) + i*im(asin(10))
Sum and product of roots [src]
sum
pi - re(asin(10)) - I*im(asin(10)) + I*im(asin(10)) + re(asin(10))
$$\left(\operatorname{re}{\left(\operatorname{asin}{\left(10 \right)}\right)} + i \operatorname{im}{\left(\operatorname{asin}{\left(10 \right)}\right)}\right) + \left(- \operatorname{re}{\left(\operatorname{asin}{\left(10 \right)}\right)} + \pi - i \operatorname{im}{\left(\operatorname{asin}{\left(10 \right)}\right)}\right)$$
=
pi
$$\pi$$
product
(pi - re(asin(10)) - I*im(asin(10)))*(I*im(asin(10)) + re(asin(10)))
$$\left(\operatorname{re}{\left(\operatorname{asin}{\left(10 \right)}\right)} + i \operatorname{im}{\left(\operatorname{asin}{\left(10 \right)}\right)}\right) \left(- \operatorname{re}{\left(\operatorname{asin}{\left(10 \right)}\right)} + \pi - i \operatorname{im}{\left(\operatorname{asin}{\left(10 \right)}\right)}\right)$$
=
-(I*im(asin(10)) + re(asin(10)))*(-pi + I*im(asin(10)) + re(asin(10)))
$$- \left(\operatorname{re}{\left(\operatorname{asin}{\left(10 \right)}\right)} + i \operatorname{im}{\left(\operatorname{asin}{\left(10 \right)}\right)}\right) \left(- \pi + \operatorname{re}{\left(\operatorname{asin}{\left(10 \right)}\right)} + i \operatorname{im}{\left(\operatorname{asin}{\left(10 \right)}\right)}\right)$$
-(i*im(asin(10)) + re(asin(10)))*(-pi + i*im(asin(10)) + re(asin(10)))
Numerical answer [src]
x1 = 1.5707963267949 + 2.99322284612638*i
x2 = 1.5707963267949 - 2.99322284612638*i
x2 = 1.5707963267949 - 2.99322284612638*i
图像
sin(x)=10 方程