Mister Exam

Other calculators

sin(x)=a equation

The teacher will be very surprised to see your correct solution 😉

v

Numerical solution:

Do search numerical solution at [, ]

The solution

You have entered [src]
sin(x) = a
$$\sin{\left(x \right)} = a$$
Detail solution
Given the equation
$$\sin{\left(x \right)} = a$$
- this is the simplest trigonometric equation
This equation is transformed to
$$x = 2 \pi n + \operatorname{asin}{\left(a \right)}$$
$$x = 2 \pi n - \operatorname{asin}{\left(a \right)} + \pi$$
Or
$$x = 2 \pi n + \operatorname{asin}{\left(a \right)}$$
$$x = 2 \pi n - \operatorname{asin}{\left(a \right)} + \pi$$
, where n - is a integer
The graph
Sum and product of roots [src]
sum
pi - re(asin(a)) - I*im(asin(a)) + I*im(asin(a)) + re(asin(a))
$$\left(\operatorname{re}{\left(\operatorname{asin}{\left(a \right)}\right)} + i \operatorname{im}{\left(\operatorname{asin}{\left(a \right)}\right)}\right) + \left(- \operatorname{re}{\left(\operatorname{asin}{\left(a \right)}\right)} - i \operatorname{im}{\left(\operatorname{asin}{\left(a \right)}\right)} + \pi\right)$$
=
pi
$$\pi$$
product
(pi - re(asin(a)) - I*im(asin(a)))*(I*im(asin(a)) + re(asin(a)))
$$\left(\operatorname{re}{\left(\operatorname{asin}{\left(a \right)}\right)} + i \operatorname{im}{\left(\operatorname{asin}{\left(a \right)}\right)}\right) \left(- \operatorname{re}{\left(\operatorname{asin}{\left(a \right)}\right)} - i \operatorname{im}{\left(\operatorname{asin}{\left(a \right)}\right)} + \pi\right)$$
=
-(I*im(asin(a)) + re(asin(a)))*(-pi + I*im(asin(a)) + re(asin(a)))
$$- \left(\operatorname{re}{\left(\operatorname{asin}{\left(a \right)}\right)} + i \operatorname{im}{\left(\operatorname{asin}{\left(a \right)}\right)}\right) \left(\operatorname{re}{\left(\operatorname{asin}{\left(a \right)}\right)} + i \operatorname{im}{\left(\operatorname{asin}{\left(a \right)}\right)} - \pi\right)$$
-(i*im(asin(a)) + re(asin(a)))*(-pi + i*im(asin(a)) + re(asin(a)))
Rapid solution [src]
x1 = pi - re(asin(a)) - I*im(asin(a))
$$x_{1} = - \operatorname{re}{\left(\operatorname{asin}{\left(a \right)}\right)} - i \operatorname{im}{\left(\operatorname{asin}{\left(a \right)}\right)} + \pi$$
x2 = I*im(asin(a)) + re(asin(a))
$$x_{2} = \operatorname{re}{\left(\operatorname{asin}{\left(a \right)}\right)} + i \operatorname{im}{\left(\operatorname{asin}{\left(a \right)}\right)}$$
x2 = re(asin(a)) + i*im(asin(a))