(1/10)^x=100 equation
The teacher will be very surprised to see your correct solution 😉
The solution
Detail solution
Given the equation:
$$\left(\frac{1}{10}\right)^{x} = 100$$
or
$$-100 + \left(\frac{1}{10}\right)^{x} = 0$$
or
$$\left(\frac{1}{10}\right)^{x} = 100$$
or
$$\left(\frac{1}{10}\right)^{x} = 100$$
- this is the simplest exponential equation
Do replacement
$$v = \left(\frac{1}{10}\right)^{x}$$
we get
$$v - 100 = 0$$
or
$$v - 100 = 0$$
Move free summands (without v)
from left part to right part, we given:
$$v = 100$$
We get the answer: v = 100
do backward replacement
$$\left(\frac{1}{10}\right)^{x} = v$$
or
$$x = - \frac{\log{\left(v \right)}}{\log{\left(10 \right)}}$$
The final answer
$$x_{1} = \frac{\log{\left(100 \right)}}{\log{\left(\frac{1}{10} \right)}} = -2$$
Sum and product of roots
[src]
$$-2 + 0$$
$$-2$$
$$1 \left(-2\right)$$
$$-2$$