Mister Exam

Other calculators


-x^2+8x+6=0

-x^2+8x+6=0 equation

The teacher will be very surprised to see your correct solution 😉

v

Numerical solution:

Do search numerical solution at [, ]

The solution

You have entered [src]
   2              
- x  + 8*x + 6 = 0
x2+8x+6=0- x^{2} + 8 x + 6 = 0
Detail solution
This equation is of the form
a*x^2 + b*x + c = 0

A quadratic equation can be solved
using the discriminant.
The roots of the quadratic equation:
x1=Db2ax_{1} = \frac{\sqrt{D} - b}{2 a}
x2=Db2ax_{2} = \frac{- \sqrt{D} - b}{2 a}
where D = b^2 - 4*a*c - it is the discriminant.
Because
a=1a = -1
b=8b = 8
c=6c = 6
, then
D = b^2 - 4 * a * c = 

(8)^2 - 4 * (-1) * (6) = 88

Because D > 0, then the equation has two roots.
x1 = (-b + sqrt(D)) / (2*a)

x2 = (-b - sqrt(D)) / (2*a)

or
x1=422x_{1} = 4 - \sqrt{22}
Simplify
x2=4+22x_{2} = 4 + \sqrt{22}
Simplify
Vieta's Theorem
rewrite the equation
x2+8x+6=0- x^{2} + 8 x + 6 = 0
of
ax2+bx+c=0a x^{2} + b x + c = 0
as reduced quadratic equation
x2+bxa+ca=0x^{2} + \frac{b x}{a} + \frac{c}{a} = 0
x28x6=0x^{2} - 8 x - 6 = 0
px+q+x2=0p x + q + x^{2} = 0
where
p=bap = \frac{b}{a}
p=8p = -8
q=caq = \frac{c}{a}
q=6q = -6
Vieta Formulas
x1+x2=px_{1} + x_{2} = - p
x1x2=qx_{1} x_{2} = q
x1+x2=8x_{1} + x_{2} = 8
x1x2=6x_{1} x_{2} = -6
The graph
05-15-10-510152025-250250
Sum and product of roots [src]
sum
          ____         ____
0 + 4 - \/ 22  + 4 + \/ 22 
((422)+0)+(4+22)\left(\left(4 - \sqrt{22}\right) + 0\right) + \left(4 + \sqrt{22}\right)
=
8
88
product
  /      ____\ /      ____\
1*\4 - \/ 22 /*\4 + \/ 22 /
1(422)(4+22)1 \cdot \left(4 - \sqrt{22}\right) \left(4 + \sqrt{22}\right)
=
-6
6-6
-6
Rapid solution [src]
           ____
x1 = 4 - \/ 22 
x1=422x_{1} = 4 - \sqrt{22}
           ____
x2 = 4 + \/ 22 
x2=4+22x_{2} = 4 + \sqrt{22}
Numerical answer [src]
x1 = -0.69041575982343
x2 = 8.69041575982343
x2 = 8.69041575982343
The graph
-x^2+8x+6=0 equation