Mister Exam

Other calculators

-x^3+(1469/1000)*x^2-0.1841*x+(3/500)=0 equation

The teacher will be very surprised to see your correct solution 😉

v

Numerical solution:

Do search numerical solution at [, ]

The solution

You have entered [src]
             2                     
   3   1469*x                3     
- x  + ------- - 0.1841*x + --- = 0
         1000               500    
$$\left(- 0.1841 x + \left(- x^{3} + \frac{1469 x^{2}}{1000}\right)\right) + \frac{3}{500} = 0$$
Vieta's Theorem
rewrite the equation
$$\left(- 0.1841 x + \left(- x^{3} + \frac{1469 x^{2}}{1000}\right)\right) + \frac{3}{500} = 0$$
of
$$a x^{3} + b x^{2} + c x + d = 0$$
as reduced cubic equation
$$x^{3} + \frac{b x^{2}}{a} + \frac{c x}{a} + \frac{d}{a} = 0$$
$$x^{3} - \frac{1469 x^{2}}{1000} + 0.1841 x - \frac{3}{500} = 0$$
$$p x^{2} + q x + v + x^{3} = 0$$
where
$$p = \frac{b}{a}$$
$$p = - \frac{1469}{1000}$$
$$q = \frac{c}{a}$$
$$q = 0.1841$$
$$v = \frac{d}{a}$$
$$v = - \frac{3}{500}$$
Vieta Formulas
$$x_{1} + x_{2} + x_{3} = - p$$
$$x_{1} x_{2} + x_{1} x_{3} + x_{2} x_{3} = q$$
$$x_{1} x_{2} x_{3} = v$$
$$x_{1} + x_{2} + x_{3} = \frac{1469}{1000}$$
$$x_{1} x_{2} + x_{1} x_{3} + x_{2} x_{3} = 0.1841$$
$$x_{1} x_{2} x_{3} = - \frac{3}{500}$$
The graph
Rapid solution [src]
x1 = 0.0615933668694125 + 0.e-23*I
$$x_{1} = 0.0615933668694125 + 3.0 \cdot 10^{-23} i$$
x2 = 0.0730011120076667 - 0.e-23*I
$$x_{2} = 0.0730011120076667 - 1.0 \cdot 10^{-23} i$$
x3 = 1.33440552112292 - 0.e-23*I
$$x_{3} = 1.33440552112292 - 1.0 \cdot 10^{-23} i$$
x3 = 1.33440552112292 - 0.e-23*i
Sum and product of roots [src]
sum
0.0615933668694125 + 0.e-23*I + 0.0730011120076667 - 0.e-23*I + 1.33440552112292 - 0.e-23*I
$$\left(1.33440552112292 - 1.0 \cdot 10^{-23} i\right) + \left(\left(0.0730011120076667 - 1.0 \cdot 10^{-23} i\right) + \left(0.0615933668694125 + 3.0 \cdot 10^{-23} i\right)\right)$$
=
1.46900000000000
$$1.469$$
product
(0.0615933668694125 + 0.e-23*I)*(0.0730011120076667 - 0.e-23*I)*(1.33440552112292 - 0.e-23*I)
$$\left(0.0615933668694125 + 3.0 \cdot 10^{-23} i\right) \left(0.0730011120076667 - 1.0 \cdot 10^{-23} i\right) \left(1.33440552112292 - 1.0 \cdot 10^{-23} i\right)$$
=
0.006 + 1.43121119895216e-24*I
$$0.006 + 1.43121119895216 \cdot 10^{-24} i$$
0.006 + 1.43121119895216e-24*i
Numerical answer [src]
x1 = 0.0730011120076667
x2 = 1.33440552112292
x3 = 0.0615933668694125
x3 = 0.0615933668694125