This equation is of the form ax2+bx+c=0 A quadratic equation can be solved using the discriminant The roots of the quadratic equation: x1=2aD−b x2=2a−D−b where D=b2−4ac is the discriminant. Because a=−3 b=6 c=16 , then D=b2−4ac= 62−(−3)4⋅16=228 Because D > 0, then the equation has two roots. x1=2a(−b+D) x2=2a(−b−D) or x1=−357+1 Simplify x2=1+357 Simplify
Vieta's Theorem
rewrite the equation −3x2+6x+16=0 of ax2+bx+c=0 as reduced quadratic equation x2+abx+ac=0 x2−2x−316=0 px+x2+q=0 where p=ab p=−2 q=ac q=−316 Vieta Formulas x1+x2=−p x1x2=q x1+x2=2 x1x2=−316