Mister Exam

Other calculators


log2(x^2+3x)=2

log2(x^2+3x)=2 equation

The teacher will be very surprised to see your correct solution 😉

v

Numerical solution:

Do search numerical solution at [, ]

The solution

You have entered [src]
   / 2      \    
log\x  + 3*x/    
------------- = 2
    log(2)       
log(x2+3x)log(2)=2\frac{\log{\left(x^{2} + 3 x \right)}}{\log{\left(2 \right)}} = 2
Detail solution
Given the equation
log(x2+3x)log(2)=2\frac{\log{\left(x^{2} + 3 x \right)}}{\log{\left(2 \right)}} = 2
transform
log(x(x+3)4)log(2)=0\frac{\log{\left(\frac{x \left(x + 3\right)}{4} \right)}}{\log{\left(2 \right)}} = 0
log(x2+3x)log(2)2=0\frac{\log{\left(x^{2} + 3 x \right)}}{\log{\left(2 \right)}} - 2 = 0
Do replacement
w=log(x2+3x)w = \log{\left(x^{2} + 3 x \right)}
Expand brackets in the left part
-2 + w/log2 = 0

Move free summands (without w)
from left part to right part, we given:
wlog(2)=2\frac{w}{\log{\left(2 \right)}} = 2
Divide both parts of the equation by 1/log(2)
w = 2 / (1/log(2))

We get the answer: w = log(4)
do backward replacement
log(x2+3x)=w\log{\left(x^{2} + 3 x \right)} = w
substitute w:
The graph
05-20-15-10-51015-2020
Sum and product of roots [src]
sum
0 - 4 + 1
(4+0)+1\left(-4 + 0\right) + 1
=
-3
3-3
product
1*-4*1
1(4)11 \left(-4\right) 1
=
-4
4-4
-4
Rapid solution [src]
x1 = -4
x1=4x_{1} = -4
x2 = 1
x2=1x_{2} = 1
Numerical answer [src]
x1 = -4.0
x2 = 1.0
x2 = 1.0
The graph
log2(x^2+3x)=2 equation