Mister Exam

Other calculators

log(2)x^2-log(1/2)(x)-2=0 equation

The teacher will be very surprised to see your correct solution 😉

v

Numerical solution:

Do search numerical solution at [, ]

The solution

You have entered [src]
        2                     
log(2)*x  - log(1/2)*x - 2 = 0
$$\left(x^{2} \log{\left(2 \right)} - x \log{\left(\frac{1}{2} \right)}\right) - 2 = 0$$
Detail solution
Expand the expression in the equation
$$\left(x^{2} \log{\left(2 \right)} - x \log{\left(\frac{1}{2} \right)}\right) - 2 = 0$$
We get the quadratic equation
$$x^{2} \log{\left(2 \right)} + x \log{\left(2 \right)} - 2 = 0$$
This equation is of the form
a*x^2 + b*x + c = 0

A quadratic equation can be solved
using the discriminant.
The roots of the quadratic equation:
$$x_{1} = \frac{\sqrt{D} - b}{2 a}$$
$$x_{2} = \frac{- \sqrt{D} - b}{2 a}$$
where D = b^2 - 4*a*c - it is the discriminant.
Because
$$a = \log{\left(2 \right)}$$
$$b = \log{\left(2 \right)}$$
$$c = -2$$
, then
D = b^2 - 4 * a * c = 

(log(2))^2 - 4 * (log(2)) * (-2) = log(2)^2 + 8*log(2)

Because D > 0, then the equation has two roots.
x1 = (-b + sqrt(D)) / (2*a)

x2 = (-b - sqrt(D)) / (2*a)

or
$$x_{1} = \frac{- \log{\left(2 \right)} + \sqrt{\log{\left(2 \right)}^{2} + 8 \log{\left(2 \right)}}}{2 \log{\left(2 \right)}}$$
$$x_{2} = \frac{- \sqrt{\log{\left(2 \right)}^{2} + 8 \log{\left(2 \right)}} - \log{\left(2 \right)}}{2 \log{\left(2 \right)}}$$
Vieta's Theorem
rewrite the equation
$$\left(x^{2} \log{\left(2 \right)} - x \log{\left(\frac{1}{2} \right)}\right) - 2 = 0$$
of
$$a x^{2} + b x + c = 0$$
as reduced quadratic equation
$$x^{2} + \frac{b x}{a} + \frac{c}{a} = 0$$
$$\frac{x^{2} \log{\left(2 \right)} + x \log{\left(2 \right)} - 2}{\log{\left(2 \right)}} = 0$$
$$p x + q + x^{2} = 0$$
where
$$p = \frac{b}{a}$$
$$p = - \frac{\log{\left(\frac{1}{2} \right)}}{\log{\left(2 \right)}}$$
$$q = \frac{c}{a}$$
$$q = - \frac{2}{\log{\left(2 \right)}}$$
Vieta Formulas
$$x_{1} + x_{2} = - p$$
$$x_{1} x_{2} = q$$
$$x_{1} + x_{2} = \frac{\log{\left(\frac{1}{2} \right)}}{\log{\left(2 \right)}}$$
$$x_{1} x_{2} = - \frac{2}{\log{\left(2 \right)}}$$
The graph
Rapid solution [src]
             ____________
       1   \/ 8 + log(2) 
x1 = - - + --------------
       2        ________ 
            2*\/ log(2)  
$$x_{1} = - \frac{1}{2} + \frac{\sqrt{\log{\left(2 \right)} + 8}}{2 \sqrt{\log{\left(2 \right)}}}$$
             ____________
       1   \/ 8 + log(2) 
x2 = - - - --------------
       2        ________ 
            2*\/ log(2)  
$$x_{2} = - \frac{\sqrt{\log{\left(2 \right)} + 8}}{2 \sqrt{\log{\left(2 \right)}}} - \frac{1}{2}$$
x2 = -sqrt(log(2) + 8)/(2*sqrt(log(2))) - 1/2
Sum and product of roots [src]
sum
        ____________           ____________
  1   \/ 8 + log(2)      1   \/ 8 + log(2) 
- - + -------------- + - - - --------------
  2        ________      2        ________ 
       2*\/ log(2)            2*\/ log(2)  
$$\left(- \frac{\sqrt{\log{\left(2 \right)} + 8}}{2 \sqrt{\log{\left(2 \right)}}} - \frac{1}{2}\right) + \left(- \frac{1}{2} + \frac{\sqrt{\log{\left(2 \right)} + 8}}{2 \sqrt{\log{\left(2 \right)}}}\right)$$
=
-1
$$-1$$
product
/        ____________\ /        ____________\
|  1   \/ 8 + log(2) | |  1   \/ 8 + log(2) |
|- - + --------------|*|- - - --------------|
|  2        ________ | |  2        ________ |
\       2*\/ log(2)  / \       2*\/ log(2)  /
$$\left(- \frac{1}{2} + \frac{\sqrt{\log{\left(2 \right)} + 8}}{2 \sqrt{\log{\left(2 \right)}}}\right) \left(- \frac{\sqrt{\log{\left(2 \right)} + 8}}{2 \sqrt{\log{\left(2 \right)}}} - \frac{1}{2}\right)$$
=
 -2   
------
log(2)
$$- \frac{2}{\log{\left(2 \right)}}$$
-2/log(2)
Numerical answer [src]
x1 = 1.27070327321602
x2 = -2.27070327321602
x2 = -2.27070327321602