Mister Exam

Other calculators

log4(x-10)=log45 equation

The teacher will be very surprised to see your correct solution 😉

v

Numerical solution:

Do search numerical solution at [, ]

The solution

You have entered [src]
log(x - 10)          
----------- = log(45)
   log(4)            
log(x10)log(4)=log(45)\frac{\log{\left(x - 10 \right)}}{\log{\left(4 \right)}} = \log{\left(45 \right)}
Detail solution
Given the equation
log(x10)log(4)=log(45)\frac{\log{\left(x - 10 \right)}}{\log{\left(4 \right)}} = \log{\left(45 \right)}
log(x10)log(4)=log(45)\frac{\log{\left(x - 10 \right)}}{\log{\left(4 \right)}} = \log{\left(45 \right)}
Let's divide both parts of the equation by the multiplier of log =1/log(4)
log(x10)=log(4)log(45)\log{\left(x - 10 \right)} = \log{\left(4 \right)} \log{\left(45 \right)}
This equation is of the form:
log(v)=p

By definition log
v=e^p

then
x10=elog(45)1log(4)x - 10 = e^{\frac{\log{\left(45 \right)}}{\frac{1}{\log{\left(4 \right)}}}}
simplify
x10=elog(4)log(45)x - 10 = e^{\log{\left(4 \right)} \log{\left(45 \right)}}
x=10+elog(4)log(45)x = 10 + e^{\log{\left(4 \right)} \log{\left(45 \right)}}
The graph
2002102202302402502602702802903003103203.703.90
Rapid solution [src]
            log(4)
x1 = 10 + 45      
x1=10+45log(4)x_{1} = 10 + 45^{\log{\left(4 \right)}}
x1 = 10 + 45^log(4)
Sum and product of roots [src]
sum
       log(4)
10 + 45      
10+45log(4)10 + 45^{\log{\left(4 \right)}}
=
       log(4)
10 + 45      
10+45log(4)10 + 45^{\log{\left(4 \right)}}
product
       log(4)
10 + 45      
10+45log(4)10 + 45^{\log{\left(4 \right)}}
=
       log(4)
10 + 45      
10+45log(4)10 + 45^{\log{\left(4 \right)}}
10 + 45^log(4)
Numerical answer [src]
x1 = 205.811946936753
x1 = 205.811946936753