log4(x-10)=log45 equation
The teacher will be very surprised to see your correct solution 😉
The solution
Detail solution
Given the equation
log ( x − 10 ) log ( 4 ) = log ( 45 ) \frac{\log{\left(x - 10 \right)}}{\log{\left(4 \right)}} = \log{\left(45 \right)} log ( 4 ) log ( x − 10 ) = log ( 45 ) log ( x − 10 ) log ( 4 ) = log ( 45 ) \frac{\log{\left(x - 10 \right)}}{\log{\left(4 \right)}} = \log{\left(45 \right)} log ( 4 ) log ( x − 10 ) = log ( 45 ) Let's divide both parts of the equation by the multiplier of log =1/log(4)
log ( x − 10 ) = log ( 4 ) log ( 45 ) \log{\left(x - 10 \right)} = \log{\left(4 \right)} \log{\left(45 \right)} log ( x − 10 ) = log ( 4 ) log ( 45 ) This equation is of the form:
log(v)=p By definition log
v=e^p then
x − 10 = e log ( 45 ) 1 log ( 4 ) x - 10 = e^{\frac{\log{\left(45 \right)}}{\frac{1}{\log{\left(4 \right)}}}} x − 10 = e l o g ( 4 ) 1 l o g ( 45 ) simplify
x − 10 = e log ( 4 ) log ( 45 ) x - 10 = e^{\log{\left(4 \right)} \log{\left(45 \right)}} x − 10 = e l o g ( 4 ) l o g ( 45 ) x = 10 + e log ( 4 ) log ( 45 ) x = 10 + e^{\log{\left(4 \right)} \log{\left(45 \right)}} x = 10 + e l o g ( 4 ) l o g ( 45 )
The graph
200 210 220 230 240 250 260 270 280 290 300 310 320 3.70 3.90
x 1 = 10 + 4 5 log ( 4 ) x_{1} = 10 + 45^{\log{\left(4 \right)}} x 1 = 10 + 4 5 l o g ( 4 )
Sum and product of roots
[src]
10 + 4 5 log ( 4 ) 10 + 45^{\log{\left(4 \right)}} 10 + 4 5 l o g ( 4 )
10 + 4 5 log ( 4 ) 10 + 45^{\log{\left(4 \right)}} 10 + 4 5 l o g ( 4 )
10 + 4 5 log ( 4 ) 10 + 45^{\log{\left(4 \right)}} 10 + 4 5 l o g ( 4 )
10 + 4 5 log ( 4 ) 10 + 45^{\log{\left(4 \right)}} 10 + 4 5 l o g ( 4 )