Mister Exam

Other calculators

log4*(5+x)=2 equation

The teacher will be very surprised to see your correct solution 😉

v

Numerical solution:

Do search numerical solution at [, ]

The solution

You have entered [src]
log(4)*(5 + x) = 2
$$\left(x + 5\right) \log{\left(4 \right)} = 2$$
Detail solution
Given the equation:
log(4)*(5+x) = 2

Expand expressions:
10*log(2) + 2*x*log(2) = 2

Reducing, you get:
-2 + 10*log(2) + 2*x*log(2) = 0

Expand brackets in the left part
-2 + 10*log2 + 2*x*log2 = 0

Move free summands (without x)
from left part to right part, we given:
$$2 x \log{\left(2 \right)} + 10 \log{\left(2 \right)} = 2$$
Divide both parts of the equation by (10*log(2) + 2*x*log(2))/x
x = 2 / ((10*log(2) + 2*x*log(2))/x)

We get the answer: x = (1 - log(32))/log(2)
The graph
Sum and product of roots [src]
sum
2 - log(1024)
-------------
    log(4)   
$$\frac{2 - \log{\left(1024 \right)}}{\log{\left(4 \right)}}$$
=
2 - log(1024)
-------------
    log(4)   
$$\frac{2 - \log{\left(1024 \right)}}{\log{\left(4 \right)}}$$
product
2 - log(1024)
-------------
    log(4)   
$$\frac{2 - \log{\left(1024 \right)}}{\log{\left(4 \right)}}$$
=
2 - log(1024)
-------------
    log(4)   
$$\frac{2 - \log{\left(1024 \right)}}{\log{\left(4 \right)}}$$
(2 - log(1024))/log(4)
Rapid solution [src]
     2 - log(1024)
x1 = -------------
         log(4)   
$$x_{1} = \frac{2 - \log{\left(1024 \right)}}{\log{\left(4 \right)}}$$
x1 = (2 - log(1024))/log(4)
Numerical answer [src]
x1 = -3.55730495911104
x1 = -3.55730495911104