log4*(5+x)=2 equation
The teacher will be very surprised to see your correct solution 😉
The solution
Detail solution
Given the equation:
log(4)*(5+x) = 2
Expand expressions:
10*log(2) + 2*x*log(2) = 2
Reducing, you get:
-2 + 10*log(2) + 2*x*log(2) = 0
Expand brackets in the left part
-2 + 10*log2 + 2*x*log2 = 0
Move free summands (without x)
from left part to right part, we given:
$$2 x \log{\left(2 \right)} + 10 \log{\left(2 \right)} = 2$$
Divide both parts of the equation by (10*log(2) + 2*x*log(2))/x
x = 2 / ((10*log(2) + 2*x*log(2))/x)
We get the answer: x = (1 - log(32))/log(2)
Sum and product of roots
[src]
2 - log(1024)
-------------
log(4)
$$\frac{2 - \log{\left(1024 \right)}}{\log{\left(4 \right)}}$$
2 - log(1024)
-------------
log(4)
$$\frac{2 - \log{\left(1024 \right)}}{\log{\left(4 \right)}}$$
2 - log(1024)
-------------
log(4)
$$\frac{2 - \log{\left(1024 \right)}}{\log{\left(4 \right)}}$$
2 - log(1024)
-------------
log(4)
$$\frac{2 - \log{\left(1024 \right)}}{\log{\left(4 \right)}}$$
2 - log(1024)
x1 = -------------
log(4)
$$x_{1} = \frac{2 - \log{\left(1024 \right)}}{\log{\left(4 \right)}}$$
x1 = (2 - log(1024))/log(4)