log4*(5+x)=2 equation
The teacher will be very surprised to see your correct solution 😉
The solution
Detail solution
Given the equation:
log(4)*(5+x) = 2 Expand expressions:
10*log(2) + 2*x*log(2) = 2 Reducing, you get:
-2 + 10*log(2) + 2*x*log(2) = 0 Expand brackets in the left part
-2 + 10*log2 + 2*x*log2 = 0 Move free summands (without x)
from left part to right part, we given:
2 x log ( 2 ) + 10 log ( 2 ) = 2 2 x \log{\left(2 \right)} + 10 \log{\left(2 \right)} = 2 2 x log ( 2 ) + 10 log ( 2 ) = 2 Divide both parts of the equation by (10*log(2) + 2*x*log(2))/x
x = 2 / ((10*log(2) + 2*x*log(2))/x) We get the answer: x = (1 - log(32))/log(2)
The graph
-20.0 -17.5 -15.0 -12.5 -10.0 -7.5 -5.0 -2.5 0.0 2.5 5.0 7.5 -50 50
Sum and product of roots
[src]
2 - log(1024)
-------------
log(4)
2 − log ( 1024 ) log ( 4 ) \frac{2 - \log{\left(1024 \right)}}{\log{\left(4 \right)}} log ( 4 ) 2 − log ( 1024 )
2 - log(1024)
-------------
log(4)
2 − log ( 1024 ) log ( 4 ) \frac{2 - \log{\left(1024 \right)}}{\log{\left(4 \right)}} log ( 4 ) 2 − log ( 1024 )
2 - log(1024)
-------------
log(4)
2 − log ( 1024 ) log ( 4 ) \frac{2 - \log{\left(1024 \right)}}{\log{\left(4 \right)}} log ( 4 ) 2 − log ( 1024 )
2 - log(1024)
-------------
log(4)
2 − log ( 1024 ) log ( 4 ) \frac{2 - \log{\left(1024 \right)}}{\log{\left(4 \right)}} log ( 4 ) 2 − log ( 1024 )
2 - log(1024)
x1 = -------------
log(4)
x 1 = 2 − log ( 1024 ) log ( 4 ) x_{1} = \frac{2 - \log{\left(1024 \right)}}{\log{\left(4 \right)}} x 1 = log ( 4 ) 2 − log ( 1024 )
x1 = (2 - log(1024))/log(4)