A quadratic equation can be solved using the discriminant. The roots of the quadratic equation: $$x_{1} = \frac{\sqrt{D} - b}{2 a}$$ $$x_{2} = \frac{- \sqrt{D} - b}{2 a}$$ where D = b^2 - 4*a*c - it is the discriminant. Because $$a = -5$$ $$b = 8$$ $$c = 4$$ , then
D = b^2 - 4 * a * c =
(8)^2 - 4 * (-5) * (4) = 144
Because D > 0, then the equation has two roots.
x1 = (-b + sqrt(D)) / (2*a)
x2 = (-b - sqrt(D)) / (2*a)
or $$x_{1} = - \frac{2}{5}$$ $$x_{2} = 2$$
Vieta's Theorem
rewrite the equation $$- 5 x^{2} + \left(8 x + 4\right) = 0$$ of $$a x^{2} + b x + c = 0$$ as reduced quadratic equation $$x^{2} + \frac{b x}{a} + \frac{c}{a} = 0$$ $$x^{2} - \frac{8 x}{5} - \frac{4}{5} = 0$$ $$p x + q + x^{2} = 0$$ where $$p = \frac{b}{a}$$ $$p = - \frac{8}{5}$$ $$q = \frac{c}{a}$$ $$q = - \frac{4}{5}$$ Vieta Formulas $$x_{1} + x_{2} = - p$$ $$x_{1} x_{2} = q$$ $$x_{1} + x_{2} = \frac{8}{5}$$ $$x_{1} x_{2} = - \frac{4}{5}$$