Mister Exam

Other calculators

lg(2x+1)-1=0 equation

The teacher will be very surprised to see your correct solution 😉

v

Numerical solution:

Do search numerical solution at [, ]

The solution

You have entered [src]
log(2*x + 1) - 1 = 0
$$\log{\left(2 x + 1 \right)} - 1 = 0$$
Detail solution
Given the equation
$$\log{\left(2 x + 1 \right)} - 1 = 0$$
$$\log{\left(2 x + 1 \right)} = 1$$
This equation is of the form:
log(v)=p

By definition log
v=e^p

then
$$2 x + 1 = e^{1^{-1}}$$
simplify
$$2 x + 1 = e$$
$$2 x = -1 + e$$
$$x = - \frac{1}{2} + \frac{e}{2}$$
The graph
Rapid solution [src]
       1   E
x1 = - - + -
       2   2
$$x_{1} = - \frac{1}{2} + \frac{e}{2}$$
x1 = -1/2 + E/2
Sum and product of roots [src]
sum
  1   E
- - + -
  2   2
$$- \frac{1}{2} + \frac{e}{2}$$
=
  1   E
- - + -
  2   2
$$- \frac{1}{2} + \frac{e}{2}$$
product
  1   E
- - + -
  2   2
$$- \frac{1}{2} + \frac{e}{2}$$
=
  1   E
- - + -
  2   2
$$- \frac{1}{2} + \frac{e}{2}$$
-1/2 + E/2
Numerical answer [src]
x1 = 0.859140914229523
x1 = 0.859140914229523