lg(2x+1)-1=0 equation
The teacher will be very surprised to see your correct solution 😉
The solution
Detail solution
Given the equation
$$\log{\left(2 x + 1 \right)} - 1 = 0$$
$$\log{\left(2 x + 1 \right)} = 1$$
This equation is of the form:
log(v)=p
By definition log
v=e^p
then
$$2 x + 1 = e^{1^{-1}}$$
simplify
$$2 x + 1 = e$$
$$2 x = -1 + e$$
$$x = - \frac{1}{2} + \frac{e}{2}$$
$$x_{1} = - \frac{1}{2} + \frac{e}{2}$$
Sum and product of roots
[src]
$$- \frac{1}{2} + \frac{e}{2}$$
$$- \frac{1}{2} + \frac{e}{2}$$
$$- \frac{1}{2} + \frac{e}{2}$$
$$- \frac{1}{2} + \frac{e}{2}$$