Mister Exam

Other calculators


x^2-4x+13=0

x^2-4x+13=0 equation

The teacher will be very surprised to see your correct solution 😉

v

Numerical solution:

Do search numerical solution at [, ]

The solution

You have entered [src]
 2               
x  - 4*x + 13 = 0
$$\left(x^{2} - 4 x\right) + 13 = 0$$
Detail solution
This equation is of the form
a*x^2 + b*x + c = 0

A quadratic equation can be solved
using the discriminant.
The roots of the quadratic equation:
$$x_{1} = \frac{\sqrt{D} - b}{2 a}$$
$$x_{2} = \frac{- \sqrt{D} - b}{2 a}$$
where D = b^2 - 4*a*c - it is the discriminant.
Because
$$a = 1$$
$$b = -4$$
$$c = 13$$
, then
D = b^2 - 4 * a * c = 

(-4)^2 - 4 * (1) * (13) = -36

Because D<0, then the equation
has no real roots,
but complex roots is exists.
x1 = (-b + sqrt(D)) / (2*a)

x2 = (-b - sqrt(D)) / (2*a)

or
$$x_{1} = 2 + 3 i$$
$$x_{2} = 2 - 3 i$$
Vieta's Theorem
it is reduced quadratic equation
$$p x + q + x^{2} = 0$$
where
$$p = \frac{b}{a}$$
$$p = -4$$
$$q = \frac{c}{a}$$
$$q = 13$$
Vieta Formulas
$$x_{1} + x_{2} = - p$$
$$x_{1} x_{2} = q$$
$$x_{1} + x_{2} = 4$$
$$x_{1} x_{2} = 13$$
The graph
Sum and product of roots [src]
sum
2 - 3*I + 2 + 3*I
$$\left(2 - 3 i\right) + \left(2 + 3 i\right)$$
=
4
$$4$$
product
(2 - 3*I)*(2 + 3*I)
$$\left(2 - 3 i\right) \left(2 + 3 i\right)$$
=
13
$$13$$
13
Rapid solution [src]
x1 = 2 - 3*I
$$x_{1} = 2 - 3 i$$
x2 = 2 + 3*I
$$x_{2} = 2 + 3 i$$
x2 = 2 + 3*i
Numerical answer [src]
x1 = 2.0 - 3.0*i
x2 = 2.0 + 3.0*i
x2 = 2.0 + 3.0*i
The graph
x^2-4x+13=0 equation