Mister Exam

Other calculators


5^x=3

5^x=3 equation

The teacher will be very surprised to see your correct solution 😉

v

Numerical solution:

Do search numerical solution at [, ]

The solution

You have entered [src]
 x    
5  = 3
$$5^{x} = 3$$
Detail solution
Given the equation:
$$5^{x} = 3$$
or
$$5^{x} - 3 = 0$$
or
$$5^{x} = 3$$
or
$$5^{x} = 3$$
- this is the simplest exponential equation
Do replacement
$$v = 5^{x}$$
we get
$$v - 3 = 0$$
or
$$v - 3 = 0$$
Move free summands (without v)
from left part to right part, we given:
$$v = 3$$
We get the answer: v = 3
do backward replacement
$$5^{x} = v$$
or
$$x = \frac{\log{\left(v \right)}}{\log{\left(5 \right)}}$$
The final answer
$$x_{1} = \frac{\log{\left(3 \right)}}{\log{\left(5 \right)}} = \frac{\log{\left(3 \right)}}{\log{\left(5 \right)}}$$
The graph
Sum and product of roots [src]
sum
log(3)
------
log(5)
$$\frac{\log{\left(3 \right)}}{\log{\left(5 \right)}}$$
=
log(3)
------
log(5)
$$\frac{\log{\left(3 \right)}}{\log{\left(5 \right)}}$$
product
log(3)
------
log(5)
$$\frac{\log{\left(3 \right)}}{\log{\left(5 \right)}}$$
=
log(3)
------
log(5)
$$\frac{\log{\left(3 \right)}}{\log{\left(5 \right)}}$$
log(3)/log(5)
Rapid solution [src]
     log(3)
x1 = ------
     log(5)
$$x_{1} = \frac{\log{\left(3 \right)}}{\log{\left(5 \right)}}$$
x1 = log(3)/log(5)
Numerical answer [src]
x1 = 0.682606194485985
x1 = 0.682606194485985
The graph
5^x=3 equation