500=lg(x/10^(-12)) equation
The teacher will be very surprised to see your correct solution 😉
The solution
Detail solution
Given the equation
$$500 = \log{\left(\frac{x}{1 \cdot 10^{-12}} \right)}$$
Transfer the right side of the equation left part with negative sign
$$- \log{\left(1000000000000 x \right)} = -500$$
Let's divide both parts of the equation by the multiplier of log =-1
$$\log{\left(1000000000000 x \right)} = 500$$
This equation is of the form:
log(v)=p
By definition log
v=e^p
then
$$1000000000000 x = e^{- \frac{500}{-1}}$$
simplify
$$1000000000000 x = e^{500}$$
$$x = 1 \cdot 10^{-12} e^{500}$$
x1 = 1.40359221785284e+205
$$x_{1} = 1.40359221785284 \cdot 10^{205}$$
x1 = 1.40359221785284e+205
Sum and product of roots
[src]
$$1.40359221785284 \cdot 10^{205}$$
$$1.40359221785284 \cdot 10^{205}$$
$$1.40359221785284 \cdot 10^{205}$$
$$1.40359221785284 \cdot 10^{205}$$
x1 = 1.40359221785284e+205
x1 = 1.40359221785284e+205